Selective Hydrogenation of Cyclic Diolefins to Monoolefins Catalyzed by a Nickel Complex

Mutsuji Sakai,* Fumiya Harada, Yasumasa Sakakibara, and Norito Uchino Department of Fiber Chemistry, Kyoto Technical University, Matsugasaki, Sakyo-ku, Kyoto 606 (Received July 29, 1981)

Synopsis. Cyclic diolefins were hydrogenated selectively to monoolefins with a nickel catalyst prepared from bis(acetylacetonato)nickel(II), triethyldialuminium trichloride, and triphenylphosphine at 40 °C under an atmospheric hydrogen pressure.

The hydrogenation of olefins using homogeneous Ziegler catalysts has been studied.¹⁾ We found that the nickel catalyst prepared from bis(acetylacetonato)-nickel(II), triethyldialuminium trichloride, and triphenylphosphine (mole ratio, Ni(acac)₂:Al₂Et₃Cl₃: PPh₃=1:10:5) catalyzed the selective hydrogenation of conjugated diolefins.²⁾ In the preceding paper³⁾ the selective hydrogenation of 2,3-dimethyl-1,3-butadiene to monoenes with the nickel catalyst was studied kinetically. This paper reports that cyclic diolefins were hydrogenated selectively to monoolefins with the nickel catalyst under mild conditions (40 °C, 1 atm H₂).

Results and Discussion

1,4-Cyclohexadiene was hydrogenated to produce cyclohexene alone in a high yield of 81%. Trace amounts of benzene (disproportionation product) were detected in the hydrogenation. Under nitrogen 1,4-cyclohexadiene neither isomerized to 1,3-diene nor disproportionated to benzene and cyclohexene with the catalyst, remaining unchanged. On the contrary, a Ziegler-type nickel catalyst, Ni(II)-AlEt₃, has been reported to be active for the disproportionation.⁴⁾

Substituted cyclic 1,4-diene, such as 1-methyl- and 1,2-dimethyl-1,4-cyclohexadiene, were hydrogenated selectively to similar extents, as shown in Table 1. In the case of 1-methyl-1,4-cyclohexadiene the hydrogen-

ation products were 1-methyl-1-cyclohexene (yield, 67%) and a mixture of 3- and 4-methyl-1-cyclohexene (yield, 7%). Under the conditions used, however, the resulting latter two methylcyclohexenes isomerized very rapidly to thermodynamically more stable 1-methyl-1-cyclohexene. The equilibrium composition consisted of 90% of 1-methyl-1-cyclohexene and 10% of a mixture of 3- and 4-methyl isomers. Thus, the alkyl substituted 1,4-dienes may be hydrogenated selectively to the corresponding thermodynamically more stable monoolefins.

In the case of 1,3-cyclohexadiene polymerization occurred exclusively. However, 1,3-cyclohexadiene was hydrogenated selectively to cyclohexene by adding the 1,3-diene dropwise to the catalyst system. The order and rate of addition played a significant role in the hydrogenation of the 1,3-diene. 1,3-Cyclooctadiene was hydrogenated selectively without requiring its slow addition, while 1,5-cyclooctadiene isomerized quantitatively to bicyclo[3.3.0]oct-2-ene. 1,5,9-Cyclododecatriene also was hydrogenated to cyclododecene. 2,5-Norbornadiene and 4-vinyl-1-cyclohexene polymerized with the catalyst.

The nickel catalyst is thus useful for the selective hydrogenation of cyclic diolefins.

Experimental

Materials. 1-Methyl-1,4-cyclohexadiene and 1,2-dimethyl-1,4-cyclohexadiene were prepared by Birch reduction.⁵⁾ The other reagents were commercially available. Solvents were distilled over sodium and diolefins were distilled freshly before use.

Hydrogenation. To a 200 ml flask fitted with a hydrogen buret, a septum inlet, and a magnetic stirrer were added

Table 1. Hydrogenation of cyclic diolefins by a nickel complex catalyst Diolefin 11 mol, Ni(acac)₂, 0.11 mol, Ni:Al₂:P=1:10:5, solvent 100 ml, temp 40 °C, H₂ 1 atm.

Diolefin	Solvent	Time	Conv.	Product (Select/%)
1-Methyl-1,4-cyclohexadiene	Toluene	8	100	1-Methyl-1-cyclohexene(67)
				3- and 4-Methyl-1-cyclohexene(7)
				1-Methylcyclohexane(2)
1,2-Dimethyl-1,4-cyclohexadiene	Ethylbenzene	22	100	1,2-Dimethylcyclohexene(73)
				1,2-Dimethylcyclohexane(0)
1,3-Cyclohexadiene	Toluene	1	99	Cyclohexene(4) Cyclohexane(0)
1,3-Cyclohexadiene	Toluene	5a)	93	Cyclohexene(74) Cyclohexane(6)
1,3-Cyclooctadiene	Ethylbenzene	3	100	Cyclooctene(89) Cyclooctane(0)
1,5-Cyclooctadiene	Ethylbenzene	$(10 \min)$	100	Cyclooctene(0) Cyclooctane(0)
				Bicyclo[3.3.0]oct-2-ene(100)
1,5,9-Cyclododecatriene	Toluene	30ъ)	70	Cyclododecene(48) Cyclododecane(0)

a) 1,3-Cyclohexadiene was added dropwise over a period of 5 h. b) 50 °C.

 $Ni(acac)_2$ (0.11 mmol) and PPh_3 (0.55 mmol) in toluene. After the atmosphere had been replaced with hydrogen the diolefin (11 mmol) in toluene was added. The hydrogenation reaction was started by the addition of Al₂Et₃Cl₃ (1.1 mmol) in toluene. The mixture became a homogeneous solution. The solution was stirred with a magnetic stirrer and kept in a thermostated bath. An aliquot (2 ml) of the solution was taken and treated with a methanol-aqueous hydrochloric acid mixture. The organic layer was separated, washed with water, and subjected to GLC analysis.

The gas chromatographic analyses were made by a Yanagimoto G-80 apparatus using columns of bis(2-cyanoethyl) ether, poly(ethylene glycol) 20 M, and 1,2,3-tris(2-cyanoethoxy)propane.

References

- 1) B. R. James, "Homogeneous Hydrogenation," John Wiley & Sons, New York (1973), pp. 363-383, and references cited therein.
- 2) Y. Sakakibara, H. Hisaki, M. Sakai, and N. Uchino, Nippon Kagaku Kaishi, 1976, 1893.
- 3) Y. Sakakibara, S. Yagi, M. Sakai, and N. Uchino, Nippon Kagaku Kaishi, 1980, 240.
- 4) C. B. Hanson, Tetrahedron Lett., 21, 1581 (1980).
 5) T. Yamaguchi, T. Ono, K. Nagai, and C. C. Sin, Kogyo Kagaku Zasshi, 73, 727 (1970).