

0040-4039(95)00397-5

1,4-Remote Stereocontrol via Asymmetric [2,3]-Wittig Rearrangements

Katsuhiko Tomooka, Ping-Huai Keong, and Takeshi Nakai*

Department of Chemical Technology, Tokyo Institute of Technology Meguro-ku, Tokyo 152, Japan

Abstract: The carbanion rearrangement of the propargylic ether of the β -(1-alkoxyethyl) allyl alcohol was found to proceed with a high degree of either 1,4-syn or 1,4-anti selection by virtue of the proper choice of the combination of the alkoxy group with the solvent used.

Remote stereocontrol in acyclic systems is a challenging problem in organic synthesis.¹ While the [2,3]-Wittig rearrangements have currently enjoyed wide application for stereocontrol over adjacent and contiguous chiral centers,² little attention has been paid to the carbanion rearrangement as a method for remote stereocontrol. In an effort to further enhance the synthetic utility of the asymmetric [2,3]-Wittig technology, we became interested in 1,4-remote stereocontrol via the novel type of [2,3]-Wittig variation depicted by eq 1, wherein the key to success is the proper choice of the G group on the carbanion terminus and the P group.

In fact, Brückner et al. have reported that the use of G=CO₂CH₃ or C=C-SiMe₃ with P=MOM (CH₂OCH₃) does not provide any appreciable level of 1,4-stereocontrol.³ Herein we disclose the [2,3]-Wittig variants (G=C=C-SiMe₃ or Ph) which provide a relatively high level of 1,4-asymmetric induction in either the *syn* or *anti* fashion by virtue of the proper choice of the P group, and demonstrate the utility of this method in the stereocontrolled synthesis of the 1,2,4-triol systems (see eq 1) which occur in some biologically important compounds. First, we prepared the propargyl ethers **1a-c** from commercially available (*R*)-methyl- β -(α -hydroxyethyl)acrylate via the standard reaction sequence⁴ and examined their rearrangements with *n*-BuLi (eq 2). Table 1 summarizes the stereochemical outcomes thus observed.

The rearrangement of 1a was found to afford an 81:19 diastereomeric mixture favoring the syn isomer (entry 1),⁵ whereas the use of a lower reaction temperature (entry 2) and a bulkier silyl group as the P group (entry 4) led to a slightly higher selectivity. The syn configuration of the major isomer was assigned by its conversion to the known derivative of (S)-4-pentyn-1,3-diol.⁶ In contrast, the dianion rearrangement of 1c (P=Li) was found to exhibit the opposite sense of stereoselection to afford anti-2c' (X=H)⁵ as the major isomer apparently via desilylation during the workup. Interestingly, the anti selectivity was enhanced by using a mixture of THF and N,N'-dimethylpropyleneurea (DMPU) as the solvent (entries 3, 6 and 7).

Entry	Substrate		Solvent	syn : anti ^b	Yield (%)
1	1 a ,	P=TBS	THF	81 : 19	92
2 ^C			THF-Et ₂ O-Hex = 4 : 1 : 1	84 : 16	82
3			THF-DMPU = 1 : 1	68 : 32	43
4	1b,	P=TIPS	THF	85 : 15	88
5d	1c,	P=H (Li)	THF	29 : 71	77 ^e
6 ^d			THF-DMPU = 3 : 1	14 : 86	62 ^e
7d			THF-DMPU = 1 : 1	11 : 89	86 ^e

Table 1. [2,3]-Wittig rearrangement of (R)-1a

a) Unless otherwise noted, the rearrangement was run with 1.2 equiv of *n*-BuLi at -78°C. b) Determined by ¹H NMR analysis (ref. 5). c) Run at -110°C. d) Run with 4.0 equiv of *n*-BuLi. e) Refers to the yield of the desilylated product **2c**' (X=H).

Next, we studied the rearrangement of the benzylic ethers **3a,b** using LIC-KOR (*n*-BuLi / *t*-BuOK).^{7,8} Again, the rearrangement of the silyl-protected substrate **3a** was found to afford *syn*-**4a** as the major isomer, whereas the dianion rearrangement of **3b** gave rise to *anti*-**4b** selectively (eq 3).⁹

The stereochemical trends observed in the rearrangement of 1 and 3 can be rationalized in terms of the transition states A vs. B, where the allylic hydrogen (H_a) is located on the π -plane so as to minimize the allylic 1,3-strain and where the G group occupies the pseudo-equatorial position to avoid 1,3-diaxial interaction. Of the two possible conformers, A should be sterically favored when P=SiR₃, thus leading to *syn* selection as actually observed. By contrast, B should be favored when P=Li, thus resulting in *anti* selection as actually observed. This argument can be extended to explain the increased *anti* selection by addition of DMPU; the strong ability of DMPU to coordinate with Li⁺ might reduce the inert volume¹⁰ of the alkoxy anion involved, thus making conformer B more favorable. In this dianion case, the preference for conformer B might be strengthened by the so-called "complex induced proximity effect".¹¹

The [2,3]-Wittig rearrangement of 2 is of synthetic value because it attains a relatively high level of either 1,4syn or 1,4-anti selection through the proper choice of the P group and the rearrangement product possesses a unique multifunctionality which readily allows a variety of further transformations. To demonstrate its synthetic utility, we carried out the stereocontrolled syntheses of the C₇-C₁₃ fragment (7) of amphotericin B¹² from **2a** (scheme 1) and the C₂₁-C₂₇ fragment (11) of bryostatins¹³ from **2c'** (scheme 2).

(a) TBDMSOTf, 2,6-lutidine, CH₂Cl₂, -10 °C; (b) O₃, MeOH / Me₂S, -78 °C (two steps 70 %); (c) LiBEt₃H, THF, -78 °C; (d) SiO₂ chromatography (three steps 49 %).

Ozonolysis of **2a** (84% syn) followed by reduction with LiBEt₃H gave the diol **5** as a 78:22 diastereomeric mixture. These diastereomers are easily separable by silica gel chromatography (5:1 hexane:EtOAc). The purified major diastereomer of 5^{14} was treated with TBSOTf followed by selective removal of TMS by NaOMe to give **6**, which was then converted to the C₇-C₁₃ fragment of Amphotericin B (**7**) by the standard sequence: partial hydrogenation, hydroboration, oxidation, and esterification. Likewise, **10** was synthesized from **2c'** (81% *anti*) as a single diastereomer¹⁴, which can be similarly transformed to the C₂₁-C₂₇ fragment of bryostatins (**11**).

In summary, we have shown that the [2,3]-Wittig rearrangement of 1 and 3 provide a high level of 1,4-remote stereocontrol either in the *syn* or *anti* fashion by the judicious choice of the P group. Furthermore, we have demonstrated its synthetic utility through the syntheses of chiral fragments of amphotericin B and bryostatins.

Acknowledgment: We thank Professor Yutaka Nishigaichi (Shimane University) for providing the spectral data of the methyl ether of 4. We also thank Fujisawa Pharmaceutical Co., Ltd. for supplying the chiral starting material.

References and Notes

- Selected recent examples on remote stereocontrol: (a) Roush, W.R.; Wada, C. K. J. Am. Chem.Soc. 1994, 116, 2151. (b) Molander, G. A.; Bobbitt, K. L. J. Am. Chem.Soc. 1993, 115, 7517. (c) Carey, J. S.; Thomas, E. J. Tetrahedron Lett. 1993, 34, 3935.
- 2. For a review on the [2,3]-Wittig rearrangement, see: Nakai, T.; Mikami, K. Organic Reactions, 1994, 46, 105.
- 3. However it should be noted that a high degree of 1,3-stereocontrol in the [2,3]-Wittig rearrangement systems has been achieved: Scheuplein, S. W.; Kusche, A.; Brückner, R.; Harms, K. Chem. Ber. **1990**, *123*, 917.
- 4. The propargyl ether 1a was prepared as shown below.

- Diastereomers of 2a-c' are easily distinguishable by ¹H NMR (CDCl₃, ppm): the δ value for CH₂, 2.37, 2.66 for syn-2a and 2.49, 2.59 for anti -2a; δ value for CH₂, 2.41, 2.64 for syn-2b and 2.52, 2.60 for anti -2b; δ value for the propargylic proton, 4.58 for syn-2c' and 4.49 for anti -2c'.
- 6. The stereochemistry of 2 was assigned by comparing its specific optical rotation with that of the known MPM ether as depicted below. The value for the (R)-isomer (>95% ee): [α]_D²³ +120.0° (c 1.00, CHCl₃): Tomooka, K.; Nakamura, Y.; Nakai, T. Unpublished result.

- 7. Schlosser, M. Pure Appl. Chem. 1988, 60, 1627
- 8. We have also examined the rearrangement of 3 using *n*-BuLi. However, these reactions resulted in complex mixtures.
- The stereochemistry and diastereomeric ratio of 4 was assigned by comparing its ¹H NMR spectrum with that of the known methyl ether derivative: Nishigaichi, Y.; Takuwa, A.; Jodai, A. *Tetrahedron Lett.* 1991, 21, 2383.
- 10. Hoffmann, R. W. Chem Rev. 1989, 89, 1841 and references cited therein.
- 11. Beak, P.; Meyers, A. I. Acc. Chem. Res. 1986, 19, 356.
- Total synthesis of amphotericin B: Nicalaou, K. C., Daines, R. A.; Ogawa, Y.; Chakraborty, T. K. J. Am. Chem. Soc. 1988, 110, 4696. Synthesis of C7-C13 fragment of amphotericin B: Evans, D. A.; Gauchet-Prunet, J. A.; Carreira, E. M.; Charette, A. B. J. Org. Chem. 1991, 56, 741.
- Total synthesis of bryostatin 7: Kageyama, M.; Tamura, T.; Nantz, M. H.; Roberts, J. C.; Somfai, P.; Whritenour, D. C.; Masamune, S; J. Am. Chem. Soc. 1990, 112, 7407. Synthesis of C₂₁-C₂₇ fragment of bryostatin: Evans, D. A.; Gauchet-Prunet, J. A.; Carreira, E. M.; Charette, A. B. J. Org. Chem. 1991, 56, 741. Roy, R.; Rey, A. W.; Charron, M.; Molino, R. J. Chem. Soc. Chem. Commun., 1989, 1308
- 14. The stereochemistry of 5 and 10 were assigned as shown below.

(Received in Japan 17 December 1994; revised 19 January 1995; accepted 23 February 1995)