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Abstract: The carbanion rearrangement of the propargylic ether of the fl-( l-alkoxyethyl) allyl 
alcohol was found to proceed with a high degree of either 1,4-syn or 1,4-anti selection by virtue of 
the proper choice of the combination of the alkoxy group with the solvent used. 

Remote stereocontrol in acyclic systems is a challenging problem in organic synthesis.1 While the [2,3]- 

Wittig rearrangements have currently enjoyed wide application for stereocontrol over adjacent and contiguous 

chiral centers, 2 little attention has been paid to the carbanion rearrangement as a method for remote 

stereocontrol. In an effort to further enhance the synthetic utility of the asymmetric [2,3]-Wittig technology, 

we became interested in 1,4-remote stereocontrol via the novel type of [2,3]-Wittig variation depicted by eq 1, 

wherein the key to success is the proper choice of the G group on the carbanion terminus and the P group. 
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0 " OH OH OH 
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In fact, Brtickner et al. have reported that the use of G=CO2CH 3 or C=C-SiMe3 with P=MOM (CH2OCH3) 

does not provide any appreciable level of 1,4-stereocontrol. 3 Herein we disclose the [2,3]-Wittig variants 

(G=C-=C-SiMe3 or Ph) which provide a relatively high level of 1,4-asymmetric induction in either the syn or 

anti fashion by virtue of the proper choice of the P group, and demonstrate the utility of this method in the 

stereocontrolled synthesis of the 1,2,4-triol systems (see eq 1) which occur in some biologically important 

compounds. First, we prepared the propargyl ethers la-e from commercially available (R)-methyl-~-(o~- 

hydroxyethyl)acrylate via the standard reaction sequence 4 and examined their rearrangements with n-BuLi (eq 

2). Table 1 summarizes the stereochemical outcomes thus observed. 
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The rearrangement of l a  was found to afford an 81:19 diastereomeric mixture favoring the syn isomer (entry 

1), 5 whereas the use of a lower reaction temperature (entry 2) and a bulkier silyl group as the P group (entry 4) 

led to a slightly higher selectivity. The syn configuration of the major isomer was assigned by its conversion 

to the known derivative of (S)-4-pentyn- 1,3-diol.6 In contrast, the dianion rearrangement of  l c  (P=Li) was 

found to exhibit the opposite sense of stereoselection to afford anti-2c' (X=H) 5 as the major isomer apparently 

via desilylation during the workup. Interestingly, the anti selectivity was enhanced by using a mixture of 

THF and N,N'-dimethylpropyleneurea (DMPU) as the solvent (entries 3, 6 and 7). 

T a b l e  1. [2,3]-Wittig rearrangement  of (R ) - l a  

Entry Substrate Solvent s)m : anti b Yield (%) 

1 la, P=TBS THF 81 : 19 92 

2 c THF-Et20-Hex = 4 : 1 : 1 84 : 16 82 

3 THF-DMPU = 1 : 1 68 : 32 43 

4 lb, P=TIPS THF 85 : 15 88 

5 d 1¢, P=H (Li) THF 29 : 71 77 e 

6 d THF-DMPU = 3 : 1 14 : 86 62 e 

7 d THF-DMPU = 1 : 1 11 : 89 86 e 

a) Unless otherwise noted, the rearrangement was run with 1.2 equiv of n-BuLi at -78°C. b) Determined by 1H NMR 

analysis (ref. 5). c) Run at -110°C. d) Run with 4.0 equiv of n-BuLi, e) Refers to the yield of the desilylated product 

2e' (X=H). 

Next, we studied the rearrangement of the benzylic ethers 3a,b using LIC-KOR (n-BuLi t-BuOK). 7,8 

Again, the rearrangement of the silyl-protected substrate 3a was found to afford syn-4a as the major isomer, 

whereas the dianion rearrangement of 3h gave rise to anti-4b selectively (eq 3). 9 

OP t-BuOK (3.0 eq.) OP OP 

" ~  I / P h  n ' B u L i ( l " 6 ~ 3 ' 0 e q ) / ~ ' ~ o H ~ h  + O  THF, -78°C " / - ~ . . ~ h  (3) 

3 syn-4 anti-4 

a ; P = T B S  a ;  7 9 : 2 1  (48 %) 
b ; P = H ( L i )  b ;  2 0 : 8 0  (90 %) 

The stereochemical trends observed in the rearrangement of 1 and 3 can be rationalized in terms of the 

transition states A vs. B, where the allylic hydrogen (Ha) is located on the ~-plane so as to minimize the allylic 

1,3-strain and where the G group occupies the pseudo-equatorial position to avoid 1,3-diaxial interaction. Of 

the two possible conformers, A should be sterically favored when P=SiR3, thus leading to syn selection as 

actually observed. By contrast, B should be favored when P=Li, thus resulting in anti selection as actually 

observed. This argument can be extended to explain the increased anti selection by addition of DMPU; the 

strong ability of DMPU to coordinate with Li + might reduce the inert volume 10 of the alkoxy anion involved, 

thus making conformer B more favorable. In this dianion case, the preference for conformer B might be 

strengthened by the so-called "complex induced proximity effect". ] 1 
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The [2,3]-Wittig rearrangement of 2 is of synthetic value because it attains a relatively high level of either 1,4- 

syn or 1,4-anti selection through the proper choice of the P group and the rearrangement product possesses a 

unique multifunctionality which readily allows a variety of further transformations. To demonstrate its 

synthetic utility, we carried out the stereocontrolled syntheses of the C7-C13 fragment (7) of amphotericin B 12 

from 2a (scheme 1) and the C21-C27 fragment (11) of bryostatins 13 from 2e' (scheme 2). 
Scheme 1 

OTBS ~/.~/.SiMe 3 OTBS 
a, b, c ~ d, e 

2a P = 

(81% syn) OH OH TBSO OTBS 
5 6 

OTBS 
f, g, h, i  

" CO2Me 
TBSO OTBS 

7 
(a) 03, MeOH / Me2S, -78 °C; (b) UBEt3H, THF, -78 °C (two steps 61%); (c) SiO2 chromatography; 
(d) TBDMSOTf, 2,6-1utidine, CH2CI 2, -10 °C; (e) MeONa, MeOH-THF, rt (two steps 83 %); 
(f) H2, P-2Ni, EtOH-THF, rt; (g) 9-BBN, THF, rt / NaO2H; (h) PDC, DMF, 50-60 °C; 
(i) CH2N 2, MeOH, rt (four steps 36 %). 

Scheme 2 OTBS OTBS 

2c' a, b ,. ~ c ,a ,d  ,. 
(81% ant/) 

O OTBS O R OTBS 

OTBS 

~ ' ~ : C 0 2 M e  
TBSO OTBS 

9 ; R = H  
10; R = TBS 

11 

(a) TBDMSOTf, 2,6-1utidine, CH2CI2, -10 °C; (b) 03, MeOH / Me2S, -78 °C (two steps 70 %); 
(c) LiBEt3H, THF, -78 °C; (d) SiO2 chromatography (three steps 49 %). 

Ozonolysis of 2a (84% syn) followed by reduction with LiBEt3H gave the diol 5 as a 78:22 diastereomeric 

mixture. These diastereomers are easily separable by silica gel chromatography (5:1 hexane:EtOAc). The 

purified major diastereomer of 514 was treated with TBSOTf followed by selective removal of TMS by 

NaOMe to give 6, which was then converted to the C7-C13 fragment of Amphotericin B (7) by the standard 

sequence: partial hydrogenation, hydroboration, oxidation, and esterification. Likewise, 10 was synthesized 

from 2¢' (81% anti) as a single diastereomer 14, which can be similarly transformed to the C21-C27 fragment 

of bryostatins (11). 
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In summary, we have shown that the [2,3]-Wittig rearrangement of I and 3 provide a high level of 1,4-remote 

stereocontrol either in the syn or anti fashion by the judicious choice of the P group. Furthermore, we have 

demonstrated its synthetic utility through the syntheses of chiral fragments of amphotericin B and bryostatins. 

Acknowledgment: We thank Professor Yutaka Nishigalchi (Shimane University) for providing the spectral 
data of the methyl ether of 4. We also thank Fujisawa Pharmaceutical Co., Ltd. for supplying the chiral 
starting material. 
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