© 1988 The Chemical Society of Japan

CHEMISTRY LETTERS, pp. 2033-2036, 1988.

Electrochemical Carboxylation of Ketones $RCOCH_2R'$ Coupled with CO₂ Reduction by $[Ru(bpy)_2(CO)_2]^{2+}$

Koji TANAKA,^{*} Hajime MIYAMOTO, and Toshio TANAKA^{* †} Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565 [†] Department of Applied Physics and Chemistry, Fukui Institute of Technology, Gakuen, Fukui 910

Electrochemical carboxylation of $PhCOCH_3$ and $C_6H_{10}(O)$ coupled with CO_2 reduction by $[Ru(bpy)_2(CO)_2]^{2+}$ was carried out in CO_2 saturated dry CH_3CN . CO_2 ligated on the ruthenium atom is reduced to $HCOO^-$ or CO upon the electrochemical reduction of the complex, where $PhCOCH_3$ and $C_6H_{10}(O)$ function as a proton source, and the resultant carbanions react with CO_2 to afford the corresponding ketoacids, catalytically.

Recently much attention has been paid to the electrochemical CO_2 reduction catalyzed by transition metal complexes¹⁾ though most of the reaction products are limited to CO and/or $HCOO^{-,2)}$ Electrochemical production of carboxylic acids by the reaction of organic halides with CO_2 , therefore, has been conducted in the presence of catalytic amounts of Ni³⁾ and Pd⁴⁾ complexes under galvanostatic conditions. In viewpoints of utilization of CO_2 , however, the electrochemical carboxylation accompanied by a carbon-hydrogen bond cleavage may be more important than that by a carbon-halogen bond cleavage. Nitrite ion ligated on transition metals is subject to dissimilatory and assimilatory reductions affording N₂⁵⁾ or N₂O⁶⁾ and NH₃,^{5,7)} respectively. By taking advantage of the strong basicity of NO₂⁻ coordinated to the reduced species of $[Fe_4S_4(SPh)_4]^{2-}$, the first catalytic carboxylation of PhCOCH₃ has been succeeded under the controlled potential electrolysis of CO₂-saturated CH₃CN containing $[Fe_4S_4(SPh)_4]^{2-}$, NO₂⁻, and PhCOCH₃.⁸⁾ The electrochemical carboxylation coupled with NO₂⁻ reduction catalyzed by 2,2'-bipyrizylruthenium complex is also of interest since ruthenium complexes have been elucidated to show high catalytic activity toward the reductions not only of NO_2^{-5} but also CO_2 .⁹) This study has revealed that $[Ru(bpy)_2(CO)_2]^{2+}$ has an ability of catalyzing the electrochemical carboxylation of PhCOCH₃ and $C_6H_{10}(O)$ even in the absence of NO_2^{-1} in CO_2 -saturated CH₃CN.

Nitrite ion selectively undergoes a dissimilatory reduction to afford N_2 (Eq. 1) under the controlled potential

 $2NO_2^- + 8H^+ + 6e^-$ -----> $N_2 + 4H_2O$ (1)

Fig. 1. Controlled potential electrolysis of CO_2 -saturated CH_3CN containing $[Ru(bpy)_2(CO)_2]$ - $(PF_6)_2$, Et_4NNO_2 , $PhCOCH_3$, and Bu_4NBr in the presence of molecular sieves 3A at -1.40 V <u>vs</u>. SCE.

electrolysis of CO_2 -saturated dry CH_3CN (17 cm³) containing $[Ru(bpy)_2(CO)_2]^{2+}$ (16.5 µmol), Et_4NNO_2 (0.52 mmol), $PhCOCH_3$ (14.1 mmol), Bu_4NBr (1.65 mmol), and molecular sieves 3A as a dehydration agent at -1.40 V <u>vs</u>. SCE. At the same time, $PhCOCH_2COO^-$, $HCOO^-$, and CO are formed catalytically (Fig. 1). The latter two apparently result from the reduction of CO_2 (Eqs. 2 and 3). This result

 $CO_2 + 2H^+ + 2e^- \longrightarrow CO + H_2O$ (2)

 $CO_2 + 2H^+ + 2e^- \longrightarrow HCOOH$ (3)

suggests that $PhCOCH_3$ functions as a proton source in the reduction not only of NO_2^- but also of CO_2 , and the main product $PhCOCH_2COO^-$ is produced by the reaction of the resultant $PhCOCH_2^-$ with CO_2 . Thus, $[Ru(bpy)_2(CO)_2]^{2-}$ can catalyze the electrochemical carboxylation coupled with CO_2 reduction in contrast to $[Fe_4S_4(SPh)_4]^{2-}$, which has no ability of catalyzing CO_2 reduction under the same reaction conditions. This is consistent with the fact that the controlled potential electrolysis of CO_2 -saturated CH_3CN (17 cm³) containing

[Ru(bpy)₂(CO)₂]²⁺ (19.3 µmol), PhCOCH₃ (20.6 mmol) and Bu_4NBr (1.94 mmol) at -1.40 V vs. SCE catalytically produced not only HCOO⁻ and CO but also PhCOCH₂COO⁻ (Fig. 2). Similarly, when CO_2 reduction was conducted in the presence of $C_6H_{10}(O)$ in place of PhCOCH3 unless otherwise the same reaction conditions, cyclohexanone-2-carboxylic acid was catalytically produced accompanied by the formation of HCOO⁻ and CO. On the other hand, the electrolysis of $[Ru(bpy)_2(CO)_2]^{2-}$ in CO₂-saturated dry CH₃CN in the absence of either $PhCOCH_3$ or $C_6H_{10}(0)$ resulted in a decomposition of the complex with evolving a trace amount of CO.¹⁰⁾

Fig. 2. Controlled potential electrolysis of CO_2 -saturated CH_3CN containing $[Ru(bpy)_2(CO)_2]$ - $(PF_6)_2$, PhCOCH₃, and Bu₄NBr in the presence of molecular sieves 3A at -1.40 V <u>vs</u>. SCE.

It has been elucidated that $[Ru(bpy)_2(CO)_2]^{2+}$ is an efficient catalyst for the reduction of CO_2 in the presence of various proton sources such as H_2O ,^{9a)} MeOH, PhOH, and $R_nNH_{4-n}^+$ (n = 2, 3),^{9b)} and that $[Ru(bpy)_2(CO)_2]^{2+}$ and $[Ru(bpy)_2(CO)(COOH)]^+$ or $[Ru(bpy)_2(CO)(COO^-)]^+$ are the precursors for the formation of CO and HCOO⁻, respectively.^{9a)} It is concluded, therefore, that $RCOCH_2R'$ plays a role of a proton source in the reactions of Eqs. 2 and 3, and the deprotonated $RCOCH_2R'$ species reacts with CO_2 to produce $RCOCHR'COO^-$ (Scheme 1). The present study has revealed that a metal complex with CO and

Scheme 1.

 CO_2 ligands predominantly affords CO and HCOO⁻ upon the electrochemical reduction of the complex. On the other hand, when CO_2 moiety ligated on a metal is utilized as a base in order to cleave a carbon-hydrogen bond of organic molecules, not only CO_2 reduction but also carboxylation of the organic molecules take place catalytically.

This work was supported by a Grant-in-Aid for Scientific Research from Ministry of Education, Science and Culture (No. 61125006).

References

- E. Fujita, D. J. Szalda, C. Creutz, and N. Sutin, J. Am. Chem. Soc., <u>110</u>, 4870 (1988), and references cited therein.
- 2) D. L. Dubios and A. Miedaner, J. Am. Chem. Soc., <u>109</u>, 113 (1987); M. Beley,
 J. -P. Collin, R. Ruppert, and J. -P. Sauvage, ibid., <u>108</u>, 7461 (1986);
 D. J. Pearce and D. J. Plether, Electroanal. Chem., <u>197</u>, 317 (1986).
- 3) G. Silvestri, S. Gambino, and G, Filardo, Tetrahedron Lett., <u>27</u>, 3429 (1986);
 G. Silvestri, S. Gambino, G, Filardo, G, Greco, and A. Gluotta, ibid., <u>25</u>, 4307 (1984).
- H. Torii, H. Tanaka, T. Hamatani, K. Morisaki, A. Jutand, F. Peluger, and J.
 F. Fauvarque, Chem. Lett., <u>1986</u>, 169.
- 5) S. Kuwabata, S. Uezumi, K. Tanaka, and T. Tanaka, Inorg. Chem., <u>25</u>, 3018 (1986).
- 6) K. Tanaka, M. Honjo, and T. Tanaka, Inorg. Chem., <u>24</u>, 2662 (1985).
- 7) W. R. Murphy, K. Takeuchi, M. H. Barley, and T. J. Meyer, Inorg. Chem., <u>25</u>, 1041 (1986).
- 8) K. Tanaka, R. Wakita, and T. Tanaka, Chem. Lett., 1987, 1951.
- 9) a) H. Ishida, K. Tanaka, and T. Tanaka, Organometallics, <u>6</u>, 181 (1987); b) H. Ishida, H. Tanaka, K. Tanaka, and T. Tanaka, J. Chem. Soc., Chem. Commun., <u>1987</u>, 131.
- 10) A black precipitate appeared in the electrolysis, and about 30% of CO based on the amount of $[Ru(bpy)_2(CO)_2]^{2-}$ was confirmed in the gaseous phase.

(Received September 12, 1988)

2036