Synthesis of N-Acyl Amino-acids by a Carbonylation Reaction

By H. WAKAMATSU,* J. UDA, and N. YAMAKAMI

(Central Research Laboratories, Ajinomoto Co. Inc., Suzuki-cho, Kawasaki, Japan)

Summary A novel cobalt carbonyl-catalysed reaction gives an N-acyl amino-acid from an aldehyde, an amide, and carbon monoxide. $\begin{array}{ll} \mathrm{R^1CH}:\mathrm{CH}_2 + \mathrm{R^2CONH}_2 + 2\mathrm{CO} + \underset{2}{\overset{\mathrm{CO}_2(\mathrm{CO})_8}{\overset{\mathrm{NHCOR}^2}{\overset{\mathrm{NHCOR}^2}{\overset{\mathrm{NHCOR}^2}{\overset{\mathrm{CO}_2}}{\overset{\mathrm{CO}_2}{\overset{\mathrm{CO}_2}}{\overset{\mathrm{CO}_2}{\overset{\mathrm{CO}_2}}{\overset{\mathrm{CO}_2}}{\overset{\mathrm{CO}_2}}{\overset{\mathrm{CO}_2}}{\overset{\mathrm{CO}_2}{\overset{\mathrm{CO}_2}}{\overset{\mathrm{CO}_2}}{\overset{\mathrm{CO}_2}}{\overset{\mathrm{CO}_2}}{\overset{\mathrm{CO}_2}}{\overset{\mathrm{CO}_2}}{\overset{\mathrm{CO}_2}}{\overset{\mathrm{CO}_2}}{\overset{\mathrm{CO}_2}}{\overset{\mathrm{CO}_2}}{\overset{\mathrm{CO}_2}}{\overset{\mathrm{CO}_2}}{\overset{\mathrm{CO}_2}}{\overset{\mathrm{CO}_2}}{\overset{\mathrm{CO}_2}}{\overset{\mathrm{CO}_2}}{\overset{\mathrm{CO}_2}}{\overset{\mathrm{CO}_2}}{\overset{\mathrm{CO}_2}}}$

In the course of our studies on the hydroformylation of $\alpha\beta$ unsaturated nitriles, a novel cobalt carbonyl catalyzed reaction has been found to give N-acyl- α -amino-acids by carbonylation.

 α -amino-acids. In the case of the synthesis of *N*-acetylalanine, the ratio

The scope of the reaction is wide, giving various N-acyl-

In the case of the synthesis of N-acetylalanine, the ratio of α - to β -alanine, after hydrolysis, is 550:1.

TABLE

Reaction Conditions

	Amide		æ	Time		
Aldehyde (50 mmol)	(50 mmol)	Solv.	Temp.	(min.)	Products	(mmol)
Formaldehyde	Acetamide	Dioxan	110°	15	N-Acetylglycine	13
Acetaldehyde	Acetamide	EtOAc	115°	10	N-Acetylalanine	34
Propionaldehyde	Acetamide	AcOH	150°	60	N -Acetyl- α -amino-n-butyric acid	23
Isobutyraldehyde	Acetamide	Dioxan	120°	60	N-Acetylvaline	35
Phenylacetaldehyde	Acetamide	Dioxan	140°	70	N-Acetylphenylalanine	27
β -Formylpropionitrile	Acetamide	Dioxan	120°	80	N -Acetyl- γ -cyano- α -amino-n-butyric	
, , , , , , , , , , , , , , , , , , , ,					acid	29
Methyl β -formylpropionate	Acetamide	EtOAc	120°	25	N -Acetyl- γ -methylglutamate	35
β -Methylmercaptopropionaldehyde	Acetamide	EtOAc	120°	20	N-Acetylmethionine	32
Acetaldehyde	Benzamide	Dioxan	120°	95	N-Benzoylalanine	15
Acetaldehyde	Lauramide	EtOAc	120°	15	N-Lauroylalanine	40
β -Formylpropionitrile	Lauramide	Dioxan	120°	20	N-Lauroyl- γ -cyano- α -amino-n-butyric	
					acid	34
Acetaldehyde	N-Ethylacetamide	Dioxan	130°	70	N-Acetyl-N-ethylalanine	29

A 100 ml capacity autoclave and 50 ml of the specified solvent were used.

Catalyst: Co₂(CO)₈ 300 mg. Initial gas pressure: CO 150 kg/cm², H₂ 50 kg/cm²

$$R^{1}CHO + R^{2}CONH_{2} + CO \xrightarrow{Co_{2}(CO)_{8}} \qquad \begin{array}{c} NHCOR^{2} \\ | \\ R^{1}CHO_{2}H \end{array}$$

Benzaldehyde and acetamide give N-acetylbenzylamine under these reaction conditions. Furfural and acraldehyde also give anomalous results.

The reaction proceeds under exactly the same conditions as used for the hydroformylation reaction. Thus it can be advantageously coupled with an oxo process.

With a stoicheiometric amount of dicobalt octacarbonyl, the reaction proceeds under atmospheric pressure and at room temperature.

(Received, October 4th, 1971; Com. 1738.)