Local Reaction Environments and their Properties for Ethene Deuterogenation on the Surfaces of SMSI[†] Catalysts

Hideaki Yoshitake, Kiyotaka Asakura and Yasuhiro Iwasawa*

Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

Ethene deuterogenation and H₂-D₂ exchange reaction over Nb₂O₅supported Rh and Ir catalysts have been investigated in relation to strong metal-support interaction (SMSI) phenomena. The activation energies for these reactions were considerably changed by high-temperature reduction of the catalyst in the case of Ir/Nb₂O₅, but were not modified in the case of Rh/Nb₂O₅. The change is ascribed to a reduction in the energy barrier for deuterium dissociation. The deuterium distribution in ethane formed during ethene deuterogenation was also investigated at various reaction temperatures and as a function of the reduction time of the catalyst. By studying the catalysts in their working state instead of by static adsorption measurements two kinds of active sites in different environments are suggested to exist on the surface of these catalysts in the SMSI states. One of these sites (site I) is on the bare metal surface and the other (site II) is on the perimeter of a migrating NbO_r island. The surface isotopic ratio of hydrogen during ethene deuterogenation is different at sites I and II. Site I, on which D_2 dissociates, acts as a deuterium supply for site II. A model for the deuterogenation of ethene on the SMSI catalysts is proposed.

Catalysis by noble metals supported on TiO₂ or Nb₂O₅ has attracted considerable interest in relation to strong metal-support interaction (SMSI) phenomena as well as surface chemistry, in order to inspect physicochemical properties controlling metal catalysis.^{1, 2} Numerous authors have pointed out the characteristic features of SMSI states of catalysts, such as a reduction in the hydrogenation activity for alkenes,^{3, 4} a drastic decrease in hydrogenolysis activity^{4, 5} and a unique product distribution in CO hydrogenation.^{6, 7} These changes or modifications in catalysis are believed to derive from the presence of TiO_x or NbO_x that has migrated onto the metal surface, and hence SMSI catalysis is thought to be due to a blockage by TiO_x or NbO_x on the metal surface,^{5, 8-12} the destruction of the ensemble required for activity,⁵ or an adsorbate-Tiⁿ⁺ interaction in the periphery of migrated TiO_x, which is assumed to be an important intermediate for enhanced hydrogenation.¹³⁻¹⁵

Catalytic reactions are generally composed of several surface processes (such as adsorption or desorption, the diffusion/transport of adsorbates, and surface reactions in which more than one adsorbed species participate) which are affected by the structures and environments at the surface in a different manner. Catalysis by SMSI catalysts therefore includes the interaction between active site and reaction intermediates, the relationship between surface processes and specific structures and environments on the metal surfaces brought about by TiO_x or NbO_x.

These physical and chemical (electronic) factors are likely to be common among metal catalyses involving promoters. A study of catalysis by SMSI catalysts showing characteristic features may provide a deeper understanding of the essential factors involved in metal catalysis and the reaction environments on metal surfaces, in addition

[†] Strong metal-support interaction.

Deuterogenation on SMSI Catalysts

to information on the development of active multifunctional metal catalysts. In the present paper we report an investigation of the role of NbO_x species in ethene deuterogenation on Ir/Nb_2O_5 and Rh/Nb_2O_5 which shows that NbO_x diffused onto the metal surface brings about not only a modification of the stability of the reaction intermediates but also a differentiation between two reaction environments with different local ratios of hydrogen and deuterium atoms.

Experimental

Supported rhodium and iridium catalysts were prepared by conventional impregnation of Nb₂O₅ (Wako Pure Chemical Industries Ltd, 99.9%) with an aqueous solution of RhCl₃·3H₂O or IrCl₃·1.5 H₂O (Soekawa Chemical Co., Ltd) followed by drying for 3 h at 393 K and calcination for 2 h at 773 K. The metal loadings were 2.0 and 2.4 wt % for Rh/Nb₂O₅ and Ir/Nb₂O₅, respectively. The catalysts were pretreated with oxygen for 1 h at 673 K, followed by evacuation for 30 min, and reduced for 1 h at 433 K [for the low-temperature reduced (LTR) catalyst] or at 773 K [for the high-temperature reduced (HTR) catalyst], followed by evacuation for 30 min *in situ* before each catalytic reaction. The particle sizes of the supported metals were estimated by hydrogen chemisorption at room temperature, transmission electron microscopy (TEM) and X-ray diffraction (X.r.d.). No surface chloride was detected by X.p.s. on the reduced catalyst.

Ethene, purchased from Takachiho Trading Co., Ltd (99.9%), was purified by freeze-thaw cycles. Hydrogen and deuterium gases of research grade were further purified through a molecular-sieve trap at 77 K.

The reactions of D_2 with ethene, H_2 with ethene and a D_2-H_2 mixture with ethene were carried out in a closed circulating system (dead volume 150 cm³) in the temperature range 210–321 K. A small portion of the reaction gas during the reaction was analysed at intervals by gas chromatography using a VZ-10 column. Deuterogenated products in the D_2 -ethene reaction were also analysed by mass spectrometry with ULVAC MSQ-150A after separation with VZ-10 column. Isotope effects in the fragmentation of C—H and C—D were negligible.

Results and Discussion

Kinetic Behaviour

The average particle sizes of the catalysts determined by H_2 chemisorption, TEM and X.r.d. are shown in table 1. The H/M values of HTR for both Rh/Nb₂O₅ and Ir/Nb₂O₅ were almost zero compared with those for LTR catalysts, owing to SMSI phenomena. Except for this, all values are in good agreement when a 1:1 stoichiometry for H/Rh or H/Ir and a spherical shape were assumed in determining particle sizes by H_2 chemisorption. Significant differences between LTR and HTR catalysts were not found in the TEM and X.r.d. results, which suggests that metal particle sizes were not altered significantly by high-temperature reduction.

Fig. 1 shows Arrhenius plots for total ethane formation in the D_2 -ethene reaction and for HD formation in the D_2 -H₂-ethene reaction on Rh/Nb₂O₅. The rates on the LTR catalyst, d[ethane]/dt or d[HD]/dt, are normalized by the H/M value to show the turnover frequencies (the activity of each surface Rh atom) in fig. 1, where the rates for the HTR catalyst are also normalized to show the activity on the same scale as that of the LTR catalyst; this avoids the large error derived from the division of the observed rates by the very small H/M value for HTR. When the rate of ethane formation is compared with that of HD formation, the latter should be reduced to half. The activation energy for HD formation (17 kJ mol⁻¹) on the LTR catalyst was almost the same as that for ethane formation (16 kJ mol⁻¹). These values were also similar to those for the HTR

H. Yoshitake, K. Asakura and Y. Iwasawa

		(m.	,		
catalyst		H	M^a	TEM	X.r.d.
Rh/Nb ₂ O ₅	LTR HTR	10	(0.11) (0.01)	9.8 10.2	9.3 9.6
Ir/Nb ₂ O ₅	LTR HTR	4	(0.31) (0.00)	4.2 4.4	4.2 4.1

 Table 1. Estimation of average particle size (nm)

^a The particle sizes, calculated from H/M values are given in parentheses.

Fig. 1. Arrhenius plots for ethane formation in the D_2 -ethene reaction $[p(D_2) = p(CH_2=CH_2) = 1.1 \text{ kPa}]$ and HD formation in the H_2-D_2 -ethene reaction $[p(H_2) = p(D_2) = p(CH_2=CH_2)/2 = 0.53 \text{ kPa}]$ on Rh/Nb₂O₅: \bigcirc , ethane formation on the LTR catalyst; \bigtriangledown , HD formation on the LTR catalyst; \bigcirc , ethane formation on the HTR catalyst: \bigtriangledown , HD formation on the HTR catalyst. The rates, d[ethane]/dt and d[HD]/dt, were normalized by the H/M value for the LTR catalyst.

catalyst (17 and 17 kJ mol⁻¹, respectively). In contrast, on the Ir/Nb_2O_5 HTR the activation energies for both ethane and HD formation, 3 and 2 kJ mol⁻¹, respectively, were much smaller than those for the Ir/Nb_2O_5 LTR, 22 and 23 kJ mol⁻¹, respectively, as shown in fig. 2(*a*) and (*b*). The activation energies, 19 and 0 kJ mol⁻¹, for ethane formation in the H₂-ethene reaction on the LTR and HTR catalysts, respectively, were a little smaller than those for ethane formation in the D₂-ethene reaction. The activation energies for HD and ethane formation were almost the same as on Rh/Nb₂O₅, as shown in fig. 2.

The Horiuti–Polanyi mechanism has been widely accepted to describe ethene hydrogenation over noble metals; it includes the associative adsorption of ethene, its transformation to half-hydrogenated ethyl species by the reaction with a hydrogen atom on surface and the hydrogenation step to form ethane. The rate-determining step in this mechanism is the dissociation of hydrogen at relatively low temperatures or the addition of a second hydrogen atom to the half-hydrogenated species at higher temperatures. The activation energy for the former step is positive, while that in the latter case is often negative. There is consequently an optimum temperature for the rate of ethane formation.¹⁶

The rate-determining step in ethene deuterogenation under the present experimental

4339

Fig. 2. (a) Arrhenius plots for ethane formation in deuterogenation and hydrogenation of ethene on Ir/Nb₂O₅; \bigcirc , D₂-ethene reaction on the LTR catalyst; \bigcirc , D₂-ethene reaction on the HTR catalyst; \triangle , H₂-ethene reaction on the LTR catalyst; \bigcirc , H₂-ethene reaction on the HTR catalyst. The rates were normalized by the *H/M* value for the LTR catalyst. $p(D_2) = p(H_2) =$ $p(CH_2=CH_2) = 1.1$ kPa. (b) Arrhenius plots for HD formation in the H₂-D₂-ethene reaction on Ir/Nb₂O₅: \bigtriangledown , LTR; \heartsuit , HTR. The rates were normalized by the *H/M* value for the LTR catalyst. $p(D_2) = p(H_2) = (\frac{1}{2})p(CH_2=CH_2) = 0.53$ kPa.

conditions is suggested to be the dissociation of D_2 , because the activation energy for ethane formation agrees well with that of HD formation, as shown in fig. 1 and 2. This holds true for both LTR and HTR catalysts. There is an isotopic effect observed in ethane formation in fig. 2, which may be ascribed to the difference between H_2 and D_2 in the energy barrier for the dissociation.

The difference in the activation energies for LTR and HTR Ir/Nb_2O_5 observed in fig. 2 suggests a large modification of the electronic state of the metal surface by SMSI. In contrast, a change in activation energy was not observed with Rh/Nb_2O_5 in fig. 1, where the SMSI phenomenon with the suppression of reaction rates appears as 'site-blocking' by inactive migrated species in this system.

The difference observed between Ir and Rh may arise from the difference in their particle sizes, or more likely in the strength and morphologic features of their SMSI. Similar differences in SMSI phenomena between different metals has been reported in benzene hydrogenation on Rh/TiO₂ and Pt/TiO₂.³

H. Yoshitake, K. Asakura and Y. Iwasawa

The catalytic activity of the HTR Ir/Nb_2O_5 catalyst was higher than that of the LTR catalyst for ethane hydrogenation and H_2-D_2 exchange at lower temperatures, in spite of the large decrease in the number of active Ir sites estimated from the H/M value. In other words, the Ir sites for hydrogen dissociation are activated by NbO_x that has migrated onto the Ir metal surface in the SMSI state.

Deuteroethane Distribution

The deuterium distributions (relative amounts) in deuteroethane produced at the initial stage of the D₂-ethene reaction are summarized in tables 2 and 3. On Rh/Nb₂O₅ the order of population was ${}^{2}\text{H}_{2} > {}^{2}\text{H}_{1} \ge {}^{2}\text{H}_{0}$ for the LTR catalyst, whereas the order ${}^{2}\text{H}_{0}$, ${}^{2}\text{H}_{2} > {}^{2}\text{H}_{1}$ was observed for the HTR catalyst. Also, in the case of Ir/Nb₂O₅ the population of deuteroethane formed was in the order ${}^{2}\text{H}_{2} > {}^{2}\text{H}_{1} > {}^{2}\text{H}_{0}$ for the LTR catalyst. Also, if the same of the LTR catalyst but ${}^{2}\text{H}_{0}$, ${}^{2}\text{H}_{2} > {}^{2}\text{H}_{1}$ for the HTR catalyst. As a whole, the trend of the SMSI effect on the distribution of deuteroethane was the same for Rh/Nb₂O₅ and Ir/Nb₂O₅.

The compositions of H_2 , HD and D_2 in the gas phase in the initial stage of the D_2 ethene reaction on Rh/Nb₂O₅ and Ir/Nb₂O₅ are given in tables 2 and 3. These results demonstrate that the change in the deuterium population of ethane on the LTR and HTR catalysts is not derived from the isotopic compositions of hydrogen in the gas phase during the deuterogenation of ethene. Again, very small amounts of deuteroethene as compared with deuteroethane formation were observed in the gas phase.

The distribution of deuteroethane reflects the stability of the half-hydrogenated intermediate of ethane deuterogenation. The population must be ordered, with ${}^{2}H_{2} > {}^{2}H_{1} > {}^{2}H_{0}$ or ${}^{2}H_{0} > {}^{2}H_{1} > {}^{2}H_{2}$, if the reaction occurs on only one type of active site with uniform reaction environments.^{17,18} In fact, Rh/Al₂O₃ and Ir/Al₂O₃ have been classified as a ${}^{2}H_{2} > {}^{2}H_{1} > {}^{2}H_{0}$ group at the reaction temperatures where the rate-determining step is the dissociation of hydrogen (as in the present conditions).^{19, 20} Our results for the LTR catalyst agreed with those for Rh/Al₂O₃ and Ir/Al₂O₃, whereas the results for the HTR catalyst showed singular distributions, suggesting that ethane is formed on at least two different kinds of sites; one site may be preferable for the formation of [${}^{2}H_{2}$]ethane and the other site for the formation of [${}^{2}H_{0}$]ethane. The latter sites were newly generated by the high-temperature prereduction, while the former sites exist originally on the metal surface and may be modified a little in the SMSI state.

The population of deuteroethane must also reflect the populations of hydrogen and deuterium atoms on the metal surface. In order to obtain further information on this problem, the rates of the formation of each deuterogenated species in the D_2 -ethene reaction were examined as a function of the high-temperature pretreatment (reduction) time of Rh/Nb₂O₅ (fig. 3). There was an optimum value for $[^{2}H_{0}]$ ethane formation at *ca*. 50 min. The rate of $[^{2}H_{1}]$ ethane formation also had a maximum at *ca*. 45 min reduction time, but the peak was smaller than that for $[^{2}H_{0}]$ ethane formation. In the case of $[^{2}H_{2}]$ ethane, the rate decreased monotonically with reduction, as shown in fig. 3. The slope of the curve for $[^{2}H_{0}]$ ethane formation was more gentle than that for the $[^{2}H_{2}]$ ethane formation, and consequently the reaction rates after the longer prereduction of catalyst were inverted, to form $[^{2}H_{0}]$ ethane as a main product. Thus the presence of NbO_x that has migrated onto the metal surfaces during the high-temperature reduction has a profound effect on the distribution of deuteroethane.

The rate of HD formation in the D_2 -H₂-ethene reaction is also plotted as a function of the catalyst reduction time in fig. 3. In contrast to the deuterogenated ethanes, the curve for HD formation decreased monotonically, but convex downward. The values of H/M (the number of chemisorbed hydrogen atoms divided by the number of metal atoms included in the catalysts) are also plotted against reduction time in fig. 3. The curve for HD formation is similar to that for the H/M value in its dependence on the reduction time.

Deuterogenation on SMSI Catalysts

reaction on Rn/NO_2O_5							
T/K	² H ₀	² H ₁	² H ₂	²H ₃	² H ₄	H_2^a	HDª
			LT	R			
210	30	28	42	0	0	0	2
220	27	26	42	5	0	0	2
233	11	23	60	5	1	1	3
			нт	R			
213	51	8	41	0	0	0	0
230	49	12	39	0	0	0	1
253	48	15	37	0	0	0	1

Table 2. Percentage distributions of deuterogenated ethanes and gas-phase hydrogen formed in the initial stage of the D_2 -ethene reaction on Rh/Nb₂O₅

The ${}^{2}H_{0}-{}^{2}H_{4}$ distributions are the values at the extrapolation to 0% conversion. ^a Values at 5% conversion in ethene deuterogenation. The residual percentage is due to D_{2} .

Table 3. Percentage distributions of deuterogenated ethanes and
gas-phase hydrogen formed in the initial stage of D_2 -ethene
reaction on Ir/Nb_2O_5

T/K	² H ₀	² H ₁	${}^{2}\mathrm{H}_{2}$	${}^{2}H_{3}$	${}^{2}\mathrm{H}_{4}$	H ₂ ^a	HDª
LTR							
250	14	36	50	0	0	0	0
263	19	33	48	0	0	0	0
273	24	31	45	0	0	0	0
HTR							
259	50	10	40	0	0	0	0
273	46	8	46	0	0	0	0
292	42	11	47	0	0	0	0

The ${}^{2}H_{0}-{}^{2}H_{4}$ distributions are the values at the extrapolation to 0% conversion. ^a Values at 5% conversion in ethene deuterogenation. The residual percentage is due to D_{2} .

Surface Reaction Sites Generated in the SMSI State

The degree of the migration of suboxide onto the metal surface in SMSI catalysts has been reported to be proportional to the square root of the reduction time.^{5,9} There should be three different reaction environments on the metal surface in the migration model for SMSI-metal/Nb₂O₅ systems, the bare metal surface (I), the perimeter of migrated NbO_x (II) and the NbO_x surface (III), as follows:

Fig. 3. Reaction rates for each deuteroethane and HD formation on Rh/Nb₂O₅ and *H/M* values as a function of the high-temperature pretreatment (reduction) time of the catalyst: \bigcirc , $[^{2}H_{0}]$ ethane; \bigcirc , $[^{2}H_{1}]$ ethane; \bigcirc , $[^{2}H_{2}]$ ethane; \bigtriangledown , HD; \square , H/M; reaction temperature, 216 K; catalyst reduction temperature, 673 K; $p(D_{2}) = p(CH_{2}=CH_{2}) = 1.1$ kPa for ethane formation, $p(H_{2}) = p(D_{2}) = (\frac{1}{2})p(CH_{2}=CH_{2}) = 0.53$ kPa for HD formation.

Assuming that NbO_x migrates onto the metal according to a diffusion process with selfsimilarity, the area of each environment can be written as a function of the hightemperature reduction time (t) in the following equations:

site I (on metal): $S_I = S_0 - \alpha t^{\frac{1}{2}}$ (1)

site II (periphery):
$$S_{II} = \beta t^{\frac{1}{4}}$$
 (2)

site III (on oxide):
$$S_{III} = \alpha t^{\frac{1}{2}}$$
 (3)

where α and β are constants and S_0 is the initial area of the metal surface or the number of initial surface metal atoms. If the rate-determining step for ethene hydrogenation on the three reaction sites is the dissociation of hydrogen, the rate of ethene hydrogenation, r(t), is expressed as a function of the reduction time as follows:

$$r(t) = \kappa_1(t)(S_0 - \alpha t^{\frac{1}{2}}) + \kappa_2(t)\beta t^{\frac{1}{4}} + \kappa_3(t)\alpha t^{\frac{1}{2}}$$
(4)

where $\kappa_j(t)$ (j = 1, 2, 3) represents the rate of the reaction occurring on site *j* per unit area (or per surface metal atom). The oxidation states of migrated Nb species have been suggested to be Nb²⁺, Nb³⁺ or Nb^{4+, 21} However, it is difficult to characterize NbO_x at the metal surface precisely in the present systems. Nevertheless, the ethene hydrogenation activities of the Nb⁺ and Nb³⁺ species supported on SiO₂ or TiO₂²² were negligible under the present conditions, and the Nb⁵⁺ monomer²² and Nb₂O₅ were inactive. Thus κ_1 ,

Deuterogenation on SMSI Catalysts

 $\kappa_2 \gg \kappa_3$ would be valid. If the value of $\kappa_j(t)$ is approximately independent of the high-temperature reduction time under the present conditions, then eqn (4) is reduced to

$$r(t) = \kappa_1 S_0 + \kappa_2 \beta t^{\frac{1}{4}} - \kappa_1 \alpha t^{\frac{1}{2}}.$$
(5)

Eqn (5) shows that r(t) has a maximum value if $\kappa_2 \beta$ is significantly large compared with $\kappa_1 \alpha$. If the reaction proceeds on site I alone, $\kappa_2 = 0$ and r(t) is equivalent to $\kappa_1(S_0 - \alpha t^{\frac{1}{2}})$, which is a downward-convex function.

With regard to ethene hydrogenation on Rh/Nb₂O₅, the SMSI treatment essentially changed neither the activation energy (fig. 1) nor the dependence of the rate on the partial pressures of ethene and hydrogen.²³ In this case the migrated NbO_x only plays the role of 'site-blocker'. Thus eqn (5) can be applied to an analysis of the result of ethene deuterogenation on Rh/Nb₂O₅. The rate of HD formation in the H₂-D₂-ethene reaction on Rh/Nb₂O₅ decreased with a downward curvature, like the value of H/M seen in fig. 3, which means that H₂-D₂ exchange occurs only on site I; hence hydrogen dissociation is suggested to occur only on site I. In fig. 3 the migration of NbO_x could be estimated to start at t = 40 min, from the H/M value of 0.10 which agrees with that for the LTR catalyst.

By fitting eqn (5) to the experimental data of $[{}^{2}H_{0}]$ -, $[{}^{2}H_{1}]$ - and $[{}^{2}H_{2}]$ ethane formation in fig. 3, we can obtain the parameters, $\kappa_{1}S_{0}$, $\kappa_{2}\beta$ and $\kappa_{1}\alpha$ for each type of deuteroethane. The results are given in table 4. The relative values for κ_{1} on site I and κ_{2} on site II were found to be ${}^{2}H_{0}$. ${}^{2}H_{1}$: ${}^{2}H_{2}$ = 32:33:35 and ${}^{2}H_{0}$. ${}^{2}H_{1}$: ${}^{2}H_{2}$ = 55:34:10, respectively. This demonstrates that the population of deuterogenated ethane formed on site I (the unmodified metal-surface area) is in the order ${}^{2}H_{2} \ge {}^{2}H_{1} \ge {}^{2}H_{0}$, and that on site II (newly generated at the periphery of NbO_x) is in the order ${}^{2}H_{0} > {}^{2}H_{1} > {}^{2}H_{2}$. Values of α/S_{0} were calculated from $\kappa_{1}\alpha$ and $\kappa_{1}S_{0}$ for $[{}^{2}H_{0}]$ -, $[{}^{2}H_{1}]$ - and $[{}^{2}H_{2}]$ -ethane in table 4. The values are in good agreement with 0.10 for α/S_{0} calculated independently from the H/M curve in fig. 3.

In the case of Ir/Nb_2O_5 eqn (4) cannot be applied unless the function $\kappa_j(t)$ has been clarified by other techniques. The activation energy varies (fig. 2), and the rate of the reaction per unit area, $\kappa_j(t)$, must be explicitly represented as a function of reduction time. However, there will also be an optimum value for $[^2H_0]$ ethane formation on $Ir/Nb_2O_5^{24}$

Recently Levin *et al.* reported a similar experiment for CO hydrogenation on $\text{TiO}_x/\text{Rh.}^{25}$ In this case the activation energy for methanation varied in a complex manner in accordance with TiO_x coverage, and $\kappa_j(t)$ was not known. However, the methanation activity had an optimum value similar to our case.

Active Sites and Reaction Environments for Ethene Deuterogenation on SMSI Catalysts

While the static interaction of adsorbed species and surface structure has been extensively studied, there have been few studies which refer to the surface dynamic environments during catalysis, including the relationship between structures and isotopic concentrations at the surface.

As already discussed, there are two characteristic sites in ethene deuterogenation on SMSI catalysts. On site I, the bare metal surface, D_2 dissociates and ethene is associatively adsorbed, and on site II, the periphery of migrated NbO_x, only ethene is adsorbed to interact with deuterium/hydrogen atoms transported from site I. Under the conditions for which D_2 dissociation is a slow step, the interconversion between associatively adsorbed ethene and half-hydrogenated species (and hence hydrogen exchange in ethene) readily occurs in order to dilute the deuterium on the surface. The surface isotopic ratio of deuterium concentration to hydrogen concentration may thus be different between site I and site II. The fact that $[^2H_0]$ ethane was the predominant

H. Yoshitake, K. Asakura and Y. Iwasawa

		-		
	$\kappa_1 S_0 / \min^{-1}$	$\kappa_2 \beta/{\rm min}^{-\frac{5}{4}}$	$\kappa_1 \alpha / \min^{-\frac{3}{2}}$	$(\alpha/S_0)/\min^{-\frac{1}{2}}$
[² H ₀]ethane	0.77	0.21	0.081	0.105
[² H,]ethane	0.74	0.13	0.085	0.115
² H, ethane	1.05	0.04	0.091	0.087
HD	2.08		0.106	0.051
H/M	0.99		0.010	0.10

Table 4. Fitting result of eqn (5)

Fig. 4. Schematic model for the deuterogenation of ethene on SMSI catalysts.

product in the D_2 -ethene reaction on site II in the SMSI catalyst indicates that the isotopic ratio (surface D/H) was significantly low at the NbO_x periphery. On the other hand, since [²H₂]ethane is main product on site I, the isotopic ratio (surface D/H) is considered to be large. In other words, the two sites are situated in different 'deuterium atmospheres' in the working state. Site I, on which D_2 dissociates, acts as 'deuterium reserver' for site II in the SMSI state. A schematic model for ethene deuterogenation on Rh/Nb₂O₅ in the SMSI state is shown in fig. 4. This model may also fit Ir/Nb₂O₅ because of the similar phenomena shown in tables 2 and 3.²⁴

The catalytic activity is controlled by the hydrogen-dissociation process, which is affected by both the number of sites and the electronic state of site I. There is no enhancement by SMSI for hydrogen dissociation on Rb/Nb_2O_5 , while for Ir/Nb_2O_5 an enhancement was observed by a modification of the electronic state of the Ir metal, accompanied by a reduction in the activation energy. In contrast to the activity, the selectivity (relative population of deuteroethanes) is affected by the nature of site II at the perimeter of the NbO_x island.

There may be two kinds of effects which the NbO_x island provides. One is a shortrange effect which can exert an influence at only one or two atom distances from the periphery, and the other is a long-range effect which causes an electronic modification of the metal surface. The importance of short-range influences by the hetero-adatom has been pointed out both experimentally and theoretically.^{26, 27} This influence may change the relative stability of the π - and σ -intermediates in the D₂-ethene reaction and suppress deuterium adsorption on metal atoms in the periphery of NbO_x. In contrast, the longrange effect may be weak, because no change in kinetic parameters was observed with LTR and HTR Rh/Nb₂O₅ under the present conditions. For Ir/Nb₂O₅ it was positive for hydrogen or deuterium dissociation, since the energy barrier for dissociation was reduced. The difference between Rh and Ir in the enhancement of H₂-D₂ exchange and ethene hydrogenation in the SMSI state may be of interest, but further investigation is necessary for its precise explanation. The phenomena observed on the Rh/Nb₂O₅ and Ir/Nb₂O₅ catalysts in the SMSI state may be more or less common to general metal catalysts with promoters.

References

- Metal-Support and Metal-Additive Effects in Catalysis, ed. B. Imelik, C. Naccache, G. Condurier, H. Praliaud, P. Meriaudeau, P. Gallezot, G. A. Martin and J. C. Vedrine (Elsevier, Amsterdam, 1982).
- 2 Strong Metal-Support Interactions, ed. R. T. K. Baker, S. J. Tauster and J. A. Dumesic, Am. Chem. Symp. Ser. 298 (American Chemical Society, Washington, DC., 1986).
- 3 D. E. Resasco, R. J. Fenoglio, M. P. Suarez and J. O. Cechini, J. Phys. Chem., 1986, 90, 4330.
- 4 P. Meriaudeuau, O. H. Ellestad, M. Dufaux and C. Naccache, J. Catal., 1982, 75, 243.
- 5 D. E. Resasco and G. L. Haller, J. Catal., 1983, 82, 279.
- 6 M. A. Vannice and R. L. Garten, J. Catal., 1979, 56, 236.
- 7 J. D. Bracy and K. Burch, J. Catal., 1984, 78, 389.
- 8 D. N. Benton, Y. M. Sun and J. M. White, J. Am. Chem. Soc., 1984, 106, 3059.
- 9 S. Takatani and Y. W. Chung, J. Catal., 1984, 90, 75.
- 10 H. R. Sadeghi and V. E. Henrich, J. Catal., 1984, 87, 279.
- 11 J. Santos, J. Philips and J. A. Dumesic, J. Catal., 1983, 81, 147.
- 12 X. Z. Jiang, T. F. Hayden and J. A. Dumesic, J. Catal., 1983, 83, 168.
- 13 M. A. Vannice and C. Sudhakar, J. Phys. Chem., 1984, 88, 2429.
- 14 J. D. Bracey and R. Burch, J. Catal., 1984, 86, 384.
- 15 W. M. H. Sachtler, D. F. Shriver, W. B. Hollenberg and A. F. Long, J. Catal., 1985, 82, 429.
- 16 G. C. Bond, Catalysis by Metals (Academic Press, London, 1962).
- 17 T. Keii, J. Chem. Phys., 1954, 22, 144.
- 18 C. Kemball, J. Chem. Soc., 1956, 735.
- 19 G. C. Bond, J. J. Phillipson, P. B. Wells and J. M. Winterbottom, Trans. Faraday Soc., 1964, 60, 1847.
- 20 G. C. Bond, G. Webb, P. B. Wells and J. M. Winterbottom, Trans. Faraday Soc., 1965, 61, 1007.
- 21 B. A. Sexton, A. E. Hughes and K. Foger, J. Catal., 1982, 77, 85.
- 22 M. Nishimura, K. Asakura and Y. Iwasawa, J. Chem. Soc., Chem. Commun., 1986, 1660; Chem. Lett., 1987, 573.
- 23 H. Yoshitake, K. Asakura and Y. Iwasawa, unpublished data.
- 24 H. Yoshitake, K. Asakura and Y. Iwasawa, to be published.
- (a) M. E. Levin, M. Salmeron, A. T. Bell and G. A. Somorjai, J. Chem. Soc., Faraday Trans. 1, 1987, 83, 2061; (b) M. E. Levin, M. Salmeron, A. T. Bell and G. A. Somorjai, J. Catal., 1987, 106, 401.
- 26 J. M. Maclaren, J. B. Pendry, R. W. Joyner and P. Meehan, Surf. Sci., 1986, 175, 263.
- 27 J. M. Maclaren, J. B. Pendry and R. W. Joyner, Surf. Sci., 1986, 178, 856.

Paper 8/00212F; Received 19th January, 1988