Second-Order Optical Nonlinearities of β -Sulfonylstyrene Derivatives

Yoshio Sugiyama,* Yasushi Suzuki, Shuichi Mitamura, Yugen Kawamoto,† Makoto Fujita,† and Katsuyuki Ogura†

Advanced Materials & Technology Research Laboratories, Nippon Steel Corporation, 1618 Ida, Nakahara-ku, Kawasaki 211 † Department of Synthetic Chemistry, Faculty of Engineering, Chiba University, Yayoicho 1-33, Chiba 260 (Received February 24, 1994)

Synopsis. The second-order optical nonlinearities and transparencies of eight substituted styrenes containing at least one sulfonyl group at the β -position, as the electronwithdrawing group, were examined. Oxidation at a sulfur atom (SMe \rightarrow SOMe \rightarrow SO₂Me) brings about increases in the β and λ_{\max} values.

Second-harmonic generation materials convert the light of semiconductor lasers (800 nm band) into blue laser light (400 nm band). It is well known that molecules containing electron-donating and electronwithdrawing groups separated by a large π -electron conjugated system possess large second-order molecular hyperpolarizabilities (β) .¹⁾

Here, we report on the second-order optical nonlinearities and transparencies of a new system represented by a general formula (I) which has a ketene dithioacetal S,S-dioxide, S,S,S'-trioxide, or S,S,S',S'-tetraoxide group²⁾ as an electron-withdrawing part (Chart 1).

Results and Discussion

Table 1 summarizes the nonlinearities β (10⁻³⁰ esu) measured by the EFISH technique, SHG (XUrea), and the transparencies (λ_{max} (nm) and λ_{cutoff} (nm)) of two β,β -bis(methylsulfonyl)styrenes ($\mathbf{1}^{2}$) and $\mathbf{2}$) having a 4or 2-methoxyl as the electron-donating group. SHG (XUrea) means the relative intensity of SHG. measured molecular dipole moments (in units of 10^{-18} esu=1 Debye= 3.3356×10^{-30} C m) of these compounds are also given in Table 1. Contrary to our expectation,

$$X \longrightarrow X$$
SO₂Tol

Nonlinearities and Transparencies of β,β -Bis(methylsulfonyl)styrenes

Compound			$\lambda_{ m max}$	$\lambda_{ m cuttoff}$	μ	β	SHG
	X	Y	nm	nm	10^{-18} esu	10^{-30} esu	$(\times \mathrm{Urea})$
$1^{2)}$	MeO	Н	325	377	6.1	6.4	8.6
2	Η	${\rm MeO}$	333	402	_		0.000

 $\beta \text{ (m}^4 \text{ V}^{-1}) = 4.1888 \times 10^{-10} \beta \text{ (esu)}.$

the methoxyl-group substitution at the ortho position, not at the para position, as for compound 1, makes the relative intensity of the SHG of 2 zero.

In order to determine the effect of a p-tolylsulfonyl group, not a methylsulfonyl group, on the β , SHG (XUrea), and λ_{max} , nine p-tolylsulfonyl-substituted styrenes, 3-11, were synthesized and examined, as listed in Table 2. Compound 3 has no substituents in the benzene ring. The oxygen coordination at a sulfur atom (4 SMe→5 SOMe→6 SO_2Me ; 8 $SMe \rightarrow 9$ $SOMe \rightarrow 10$ SO_2Me) brings about increases of β (4 \rightarrow 5 \rightarrow 6; 8 \rightarrow 9 \rightarrow 10) and λ_{max} (4 \rightarrow 5 \rightarrow 6; $8\rightarrow 9\rightarrow 10$). The introduction of a methoxyl group as the electron-donating group also increases β (3 \rightarrow 5; $4\rightarrow 8$; $5\rightarrow 9$; $6\rightarrow 10$) and λ_{max} $(3\rightarrow 5$; $4\rightarrow 8$; $5\rightarrow 9$; $6\rightarrow 10$). The increase in the electron-donating ability $(4 \text{ MeO} \rightarrow 11 \text{ Me}_2\text{N})$ results in those of β $(4 \rightarrow 11)$ and λ_{max} (4 \rightarrow 11). It coincides with an estimation from a two-level model, in which increasing λ_{max} tends to increase β . The introduction of a p-tolylsulfonyl group, not a methylsulfonyl group $(6\rightarrow7)$, leads to a decrease in β (6 \rightarrow 7). The introduction of various kinds of substituents (3—11) has no ability to increase the relative intensity of SHG (<1), contrary to our expectation.

In this study, we examined the second-order optical nonlinearities and transparencies of eleven (eight new and the reported three $(1, 6, 10)^{2}$) substituted styrenes containing at least one sulfonyl group as the electron-withdrawing group. The oxidation at a sulfur atom $(SMe \rightarrow SOMe \rightarrow SO_2Me)$ and the electron-donating ability (H<MeO<Me₂N) in these eleven styrene derivatives bring about increases of the β and λ_{max} values.

Experimental

Compounds 1—11 were prepared as described below; the other compounds were commercially available.

The melting points were determined on a hotstage microscope apparatus (Yanagimoto) and were uncorrected. ¹HNMR spectra were obtained on a JEOL (JNM-FX 270) spectrometer. Infrared spectra were measured with a JASCO (A-200) spectrometer; the data are presented for important diagnostic absorptions. Elementary analyses were provided by the chemical analysis center of Chiba university.

Measurements of the absorption maximum wavelength (λ_{max}) , the absorption cutoff $(\lambda_{\text{cutoff}})$ evaluated based on the wavelength, the transmittance of which was 95% in an ethanol solution, the second-order molecular hyperpolarizability (β) , the molecular dipole (μ) , and the relative in-

Table 2. Nonlinearities and Transparencies of β -(p-Tolylsulfonyl)styrenes

	Compound				$\lambda_{ ext{cuttoff}}$	μ	β	SHG
	X	Y	A	nm	nm	10^{-18} esu	10^{-30} esu	$(\times Urea)$
3	H	Н	SOMe	280	377	4.9	3.8	0.004
4	MeO	H	SMe	314	386	5.9	4.6	0.000
5	MeO	H	SOMe	324	398	5.1	6.0	0.000
$6^{2)}$	MeO	H	$\mathrm{SO_2Me}$	330	-	6.6	8.3	0.000
7	MeO	H	$\mathrm{SO}_2\mathrm{Tol}$	337		6.5	6.4	0.000
8	MeO	MeO	SMe	336	397	5.6	6.5	0.000
9	MeO	MeO	SOMe	347	421	5.2	7.3	0.08
$10^{2)}$	MeO	MeO	$\mathrm{SO}_{2}\mathrm{Me}$	352		6.8	10.6	0.000
11	$\mathrm{Me_2N}$	H	SMe	381	457	6.7	10.3	0.000

tensity of SHG were described in a previous paper.³⁾ The solubilities of compounds **6**, **7**, and **10** in ethanol and that of compound **2** in dioxane were poor. Therefore, the λ_{cutoff} , μ , and β of those compounds could not be measured, as given in Tables 1 and 2.

Preparation of 4-Methoxy-β,β-bis(methylsulfonyl)styrene (1). A Typical Procedure: This compound was prepared by the oxidation of 4-methoxy-β-methylsulfinyl-β-methylthiostyrene⁴⁾ (1.07 g; 4.41 mmol) with m-chloroperbenzoic acid (MCPBA) (2.72 g; 14.77 mmol) in dichloromethane (50 ml) at -20 °C (5 h) and then at room temperature (60 h). The usual workup and separation by column chromatography on silica gel [eluent: benzene-ethyl acetate (2:1)] gave 1 (1.23 g; 97% yield). Colorless crystals; mp 164—165 °C (from CHCl₃/hexane); ¹H NMR (CDCl₃) δ=3.35 (6H, d), 3.89 (3H, s), 6.99 (2H, d, J=9.0 Hz), 7.89 (2H, d, J=9.0 Hz), 8.29 (1H, s). IR (KBr) 2900, 1605, 1580, 1560, 1420, 1300, 1280, 1180, 1140, 1030, 980, 950, 830, 780 and 760 cm⁻¹.

Found: C, 45.40; H, 4.83%. Calcd for $C_{11}H_{14}O_5S_2$: C, 45.50; H, 4.86%.

2- Methoxy- β , β **- bis(methylsulfonyl)styrene (2):** Yellow crystals; mp 146—148 °C (from CHCl₃/hexane); ¹H NMR (CDCl₃) δ =3.36 (6H, d, J=4.0 Hz), 3.91 (3H, s), 6.91—7.64 (4H, m), 8.62 (1H, s). IR (KBr) 3000, 2925, 1585, 1470, 1455, 1320, 1295, 1240, 1130, 1010, 970, 950, 940, 925, 765, 740, 570, 560, 530, and 505 cm⁻¹.

Found: C, 44.79; H, 4.87%. Calcd for $C_{11}H_{14}O_5S_2$: C, 44.81; H, 4.96%.

Preparation of β-Methylsulfinyl-β-(p-tolylsulfonyl)styrene (3). A Typical Procedure: Oxidation of β-methylthio-β-(p-tolylsulfonyl)styrene $^{5)}$ (996 mg; 3.28 mmol) with MCPBA (728 mg; 4.22 mmol) in dichloromethane (40 ml) was performed at $-20~^{\circ}\mathrm{C}$ (4 h) to give 3 (796 mg; 76% yield). Colorless crystals; mp 134—135 $^{\circ}\mathrm{C}$ (from benzene/hexane); $^{1}\mathrm{H}\,\mathrm{NMR}$ (CDCl₃) $\delta\!=\!2.42$ (3H, s), 3.17 (3H, s), 7.34 (2H, d, $J\!=\!7.4$ Hz), 7.50 (5H, s), 7.96 (2H, d, $J\!=\!8.6$ Hz), 8.28 (1H, s). IR (KBr) 3000, 1580, 1560, 1510, 1480, 1440, 1400, 1300, 1280, 1200, 1140, 1060, 950, 930, 910, 810, 750, 690, 660, 600, 550, and 500 cm $^{-1}$.

Found: C, 59.88; H, 4.94%. Calcd for $C_{16}H_{16}O_3S_2$: C, 59.97; H, 5.03%.

4- Methoxy- β - methylsulfinyl- β - (p- tolylsulfonyl)-

styrene (5): Colorless crystals; mp 115—116 °C; ¹H NMR (CDCl₃) δ =2.40 (3H, s), 3.13 (3H, s), 3.84 (3H, s), 7.06 (2H, d, J=8.6 Hz), 7.40 (2H, d, J=8.2 Hz), 7.72 (2H, d, J=8.6 Hz), 7.95 (2H, d, J=8.2 Hz), 8.28 (1H, s). IR (KBr) 3450, 3000, 1600, 1508, 1458, 1420, 1300, 1260, 1180, 1145, 1070, 1025, 960, 910, 830, 770, 660 cm⁻¹.

Found: C, 58.24; H, 5.06%. Calcd for $C_{17}H_{18}O_4S_2$: C, 58.26; H, 5.18%.

3, 4- Dimethoxy- β - methylsulfinyl- β - (p- tolylsulfonyl)styrene (9):⁵⁾ Pale yellow crystals; mp 145—146 °C (from benzene/hexane); ¹H NMR (CDCl₃) δ =2.42 (3H, s), 3.10 (3H, s), 3.89 (3H, s), 3.92 (3H, s), 6.92 (1H, d, J=8.0 Hz), 7.11—7.50 (2H, m), 7.64 (1H, d, J=8.0 Hz), 7.54—8.04 (3H, m), 8.19 (1H, s). IR (KBr) 1510, 1265, 1140, 1080, 1065, 550 cm⁻¹.

Found: C, 56.92; H, 5.28%. Calcd for $C_{18}H_{20}O_5S_2$: C, 56.82; H, 5.30%.

Preparation of 4-Methoxy- β -methyllthio- β -(p-tolylsulfonyl)styrene (4). A Typical Procedure: To a solution of (methylthio)methyl p-tolyl solfone⁶⁾ (1.01 g; 4.66 mmol) in THF (15 ml), were added successively trimethylsilyl chloride (1.30 ml; 10.3 mmol) and a 1.58 mol dm^{-3} hexane solution of butyllithium (6.45 ml; 10.3 mmol) at -78°C. After the resulting solution had been stirred at the same temperature for 2 h, and then p-methoxybenzaldehyde (0.68 ml; 5.6 mmol) was added at -78 °C. The reaction temperature was then slowly raised to room temperature, and the reaction mixture stirred for 2 h. Quenching with an aqueous solution of ammonium chloride, extraction with diisopropyl ether and chloroform, and column chromatography on silica gel [hexane-ethyl acetate (5:1)] gave 4 (1.01 g; 65% yield). Colorless crystals; mp 123—125 °C (from CHCl₃/hexane); ¹H NMR (CDCl₃) δ =2.18 (3H, s), 2.41 (3H, s), 3.84 (3H, s), 6.95 (2H, d, J=9.0 Hz), 7.32 (2H, d, J=8.0 Hz), 7.90 (2H, d, J=8.2 Hz), 7.98 (2H, d, J=8.2 Hz), 8.21 (1H, s). IR (KBr) 1600, 1500, 1440, 1340, 1280, 1260, 1170, 1140, 1080, $1020, 905, 840, 750, 650, 580, 560, and 530 cm^{-1}$.

Found: C, 61.04; H, 5.45%. Calcd for $C_{17}H_{18}O_3S_2$: C, 61.05; H, 5.42%.

3,4-Dimethoxy-β-methythio-β- (p-tolylsulfonyl)-styrene (8): $^{5,7)}$ Pale yellow crystals; mp 119—120 °C (from benzene/hexane); 1 H NMR (CDCl₃) δ =2.19 (3H, s), 2.39 (3H, s), 3.85 (3H, s), 3.88 (3H, s), 6.90 (1H, d, J=8.0

Hz), 7.30 (2H, d, J=8.0 Hz), 7.52 (1H, dd, J=1.0, 8.0 Hz), 7.80 (1H, d, J=1.0 Hz), 7.87 (2H, d, J=8.0 Hz), 8.18 (1H, s). IR (KBr) 1585, 1510, 1310, 1260, 1140, 1085 cm⁻¹.

Found: C, 59.36; H, 5.50%. Calcd for $C_{18}H_{20}O_4S_2$: C, 59.32; H, 5.53%.

4-Dimethylamino-β-methythio-β-(p-tolylsulfonyl)-styrene (11): Yellow crystals; mp 114—116 °C (from benzene/hexane); ¹H NMR (CDCl₃) δ =2.16 (3H, s), 2.40 (3H, s), 3.02 (6H, s), 6.68 (2H, d, J=9.0 Hz), 7.29 (2H, d, J=7.9 Hz), 7.82 (2H, d, J=7.4 Hz), 8.00 (2H, d, J=8.6 Hz), 8.16 (1H, s). IR (KBr) 2900, 1600, 1560, 1510, 1420, 1370, 1360, 1290, 1220, 1180, 1170, 1140, 1080, 910, 820, 720, 650, 580, 550, 520, 470 cm⁻¹.

Found: C, 62.12; H, 6.07; N, 3.99%. Calcd for $C_{18}H_{21}O_{2}NS_{2}$: C, 62.22; H, 6.09; N, 4.03%.

Preparation of 4-Methoxy- β -methysulfonyl- β -(p-A Typical Procedure: tolylsulfonyl)styrene (6): This compound was produced by the oxidation of 4 (330 mg; 1.02 mmol) with excess MCPBA (535 mg; 3.09 mmol) in dichloromethane (10 ml) at -20 °C (3 h) and at room temperature (17 h). The usual workup and separation by column chromatography on silica gel [eluent: benzene-ethyl acetate (3:1)] gave 6 (235 mg; 64% yield). This product was shown by ¹H NMR to consist of two geometric isomers in the ratio of 8:2. Their geometry was not determined. Colorless crystals; mp 168—170 °C (from CH₃Cl/hexane); ¹H NMR (CDCl₃) δ =2.38 (3H, s), 2.43 (3H, s), 3.22 (3H, s), 3.48 (3H, s), 3.87 (3H, s), 3.89 (3H, s), 6.98 (2H, d, J=9.2)Hz), 7.33 (2H, d, J=8.6 Hz), 7.84 (2H, d, J=8.2 Hz), 7.90 (2H, d, J=8.6 Hz), 8.29 (1H, s), 8.54 (1H, s). IR (KBr) 1590, 1570, 1540, 1500, 1440, 1420, 1360, 1300, 1270, 1180, 1140, 1080, 1020, 950, 930, 840, 820, 750, 700, 670, 585, 570, $535, 510 \text{ cm}^{-1}$.

Found: C, 55.52; H, 4.89%. Calcd for $C_{17}H_{18}O_5S_2$: C, 55.72; H, 4.95%.

3, 4- Dimethoxy- β - methysulfonyl- β - (p- tolylsulfonyl)styrene (10): Pale yellow crystals; mp 160—161 °C (from CH₃Cl/hexane); ¹H NMR (CDCl₃) δ =2.38 (3H, s), 2.43 (3H, s), 3.19 (3H, s), 3.48 (3H, s), 3.88 (3H, s), 3.91 (3H, s), 3.95 (3H, s), 3.97 (3H, s), 6.95 (1H, d, J=8.0 Hz), 7.35 (2H, d, J=8.2 Hz), 7.48 (1H, dd, J=12.9 Hz), 7.76 (1H, d, J=2.4 Hz), 7.85 (2H, d, J=8.2 Hz), 8.23 (1H, s),

 $8.55~(1H,\,s).~IR~(KBr)~1570,~1555,~1500,~1450,~1360,~1320,~1270,~1240,~1140,~1080,~1010,~970,~800,~770,~640,~560~cm^{-1}.$ Found: C, 54.29; H, 5.08%. Calcd for $C_{17}H_{20}O_6S_2\colon$ C, 54.53; H, 5.08%.

4- Methoxy- β , β - bis(p- tolylsulfonyl)styrene (7): Compound 7 was prepared by the oxidation of 4-methoxy- β -(p-tolylsulfonyl)- β -(p-tolylthio)styrene in an analogous manner to 1. Colorless crystals; mp 176—177 °C (from CH₃Cl/hexane); ¹H NMR (CDCl₃) δ =2.30 (3H, s), 2.40 (3H, s), 3.80 (3H, s), 6.80—7.97 (12H, m), 8.54 (1H, s). IR (KBr) 2900, 1600, 1570, 1550, 1500, 1460, 1420, 1365, 1320, 1300, 1260, 1180, 1150, 1080, 1030, 930, 760, 710, 690, 660, 620, 590, 550, 520, 480 cm⁻¹.

Found: C, 62.24; H, 4.93%. Calcd for $C_{23}H_{22}O_5S_2$: C, 62.41; H, 5.01%.

References

- 1) A general paper for the molecules containing electron-donating and electron-withdrawing groups separated by an electron-conjugated system: a) J. L. Oudar, J. Chem. Phys., 67, 446 (1977); b) J. L. Oudar and D. S. Chemla, J. Chem. Phys., 66, 2664 (1977); c) B. F. Levine, Chem. Phys. Lett., 37, 516 (1976).
- 2) In a preliminary communication, we reported so high electron-acceptability of 2,2-bis(alkyl- or arylsulfonyl)ethenyl group as to serve as the electron-withdrawing group of second order nonlinear optics: K. Ogura, S. Takahashi, Y. Kawamoto, M. Suzuki, M. Fugita, Y. Suzuki, and Y. Sugiyama, *Tetrahedron Lett.*, **34**, 2649 (1993).
- 3) Y. Sugiyama, Y. Suzuki, S. Mitamura, and T. Nishiyama, Bull. Chem. Soc. Jpn., 66, 687 (1993).
- 4) K. Ogura, Y. Ito, and G. Tsuchihashi, *Bull. Chem. Soc. Jpn.*, **52**, 2013 (1979).
- 5) K. Ogura, N. Yahata, K. Hashizume, K. Tsuyama, K. Takahashi, and H. Iida, *Chem. Lett.*, **1983**, 767.
- 6) K. Ogura, N. Yahata, J. Watanabe, K. Takahashi, and H. Iida, *Bull. Chem. Soc. Jap.*, **56**, 3543 (1983).
- 7) This compound is also prepared by the Knoevenagel condensation of (methylthio)methyl *p*-tolyl sulfone with 3, 4-dimethoxybenzaldehyde in the presence of potassium carbonate in refluxing isopropyl alcohol.⁵⁾