DIASTEREOSELECTIVE AUTO-PROTONATION OF ENOLATES ANTI-HOUK SELECTIVITY

Said BERRADA and Patrick METZNER*

Laboratoire de Chimie des Composés Thioorganiques (UA CNRS n° 480) ISMRA, Université de Caen-Basse Normandie, 14032 Caen, France

Abstract - 1,4-Addition reaction of lithiated methyl dithioacetate with α,β -disubstituted enones affords 5-oxodithioesters. The diastereoselectivity ranges from moderate to high (> 95:5) in favour of the syn isomer. This anti-Houk selectivity arises from an 'auto-protonation', involving transfer of the hydrogen α to the thiocarbonyl group towards the enolate moiety. A pseudo-cyclic transition state leading to the syn product is postulated.

The problem of stereochemical course of the electrophilic attack upon an enolate bearing a prochiral carbon adjacent to a chiral centre has not been addressed, in the acyclic series, until the past few years.¹⁻⁹ Model geometries for the transition structure of this reaction have been calculated by Houk and co-workers.¹⁰ Some groups^{2,3,5-7} have recently disclosed experimental results on the stereochemistry of the asymmetric protonation¹¹ of diastereotopic enolates 1. The *anti* product 2 predominates in agreement with the Houk model.¹⁰

Our previous results have demonstrated that enethiolates are soft nucleophiles which undergo regioselective 1,4-addition with a variety of α -unsaturated ketones.¹²⁻¹⁷ This prompted us to examine the addition reaction of lithium dithioacetate 3 with α, β -disubstituted enones 4-7 and the stereoselectivity of the protonation of generated enolates 11. We now report that this reaction leads to products of *syn* stereochemistry, contrary to expectations from Houk model.

Deprotonation of methyl dithioacetate with lithium di-isopropylamide in tetrahydrofuran, followed by treatment with enones 4-7 around 0°C and quenching at -78°C with aqueous ammonium chloride gave 5-oxodithioalcanoates

Entry	Enone	1,4-Ad read temp. °C	dditon ction time	a) Product	Yield %	Diastereo- isomers ratio syn/anti
1		-5	20 mn	О Б К К К К К К К К К К К К К К К К К К	62	76 : 24
2	4 tBu	0 th 20	4 h en 1 night	12 0 SMe	64	90 : 10
3	5 O II Ph	0	3 h 30 mn	Ph SMe	81	81 : 19
4	6 0 II Ph	0	4 h	Ph Ph SMe	61	85 : 15
5		-45	30 mn	0 IS II S SMe	80	> 95 : 5
6	B U U	-45	25 mn	16 U SMe	b) 56	> 95 : 5
7	و ا	-25	20 mn		80	94 : 6
	10			18		

Table. Protonation of 1,2-diastereotopic enolates

a) Major diastereoisomer. Configuration of compounds 13-18 was assigned by analogy with 12. b) Some enone 9 was recovered (27% yield).

12-15 (table). The diastereoisomers were discerned by ¹³C and 350 Mhz ¹H NMR. The syn configuration of the major diastereomer 12 was established by chemical correlation with the following compounds, prepared via reactions of known stereochemistry: $(2R^*, 3S^*)$ (3-methyl 2-pentyl) acetate, $(3R^*, 4S^*)$ 3,4-dimethyl-2-hexanone, and trans dihydro-4,5-dimethyl-2(3H)-furanone.

Starting from the enone 4 bearing methyl groups (entry 1), the syn/anti ratio is 76:24. Introduction of phenyl groups on the enone skeleton (entries 3,4) increases the percentage of syn isomer. The highest selectivity in this series was obtained with the t-butyl enone 5 (entry 2; 90:10).

These interesting selections in the acyclic series lead us to examine examples of enones generating cyclic enolates bearing a chiral side chain. Addition of lithium enethiolate 3 to 2-ethylidene cycloalcanones 8-10 yields oxodithioesters 16-18 with high syn selectivity (entries 5-7; >94:6).

All cases studied so far afford the syn stereoisomer, though application of the Houk model 1 leads to an anti stereochemistry 2 (R = CH_2CS_2Me). To understand the difference we looked more carefully at the protonation step. From previous work,¹³ we have learned that transfer of the acidic proton¹⁸ α to the thiocarbonyl group toward the enolate moiety occurs quite easily, even under aprotic conditions. To monitor the actual species, present before addition of water, we quenched the 1,4-adduct (enolate 11 or enethiolate 19) with iodomethane. Instead of an oxodithioester, we isolated the ketenedithioacetal 20 arising from S-alkylation¹³ of enethiolate 19.

Proton transfer has thus taken place directly after the formation of enolate 11. Stereochemistry is thus controlled at this step. An intermolecular proton delivery would probably lead to a Houk stereoproduct 2. We prefer to put forward an intramolecular auto-protonation, involving a concerted pericyclic reaction of two 4 electrons and 4 centers moleties, depicted below.

Molecular models suggested two possible stereomodels A and B with an almost eclipsed conformation allowing good overlap between the hydrogen and π enolate orbitals. The steric interaction between R₂ and CS₂Me causes a severe destabilization of structure B. In contrast, model A appears relatively favoured and actually affords a *syn* product configuration.

Our study has brought a new solution to stereocontrol via 'autoprotonation' of diastereotopic enolates. It allows creation of two vicinal asymmetric centers of relative syn configuration by carbon-carbon bond formation in the acyclic series¹⁹ and in cyclic systems bearing a chiral side chain. The structures obtained are present in a number of natural products. Studies aimed at exploiting the diastereoselectivity observed here and at looking closer to the protonation step mechanism are in progress.

REFERENCES

1	Evans D. A., in Morrison J. D., 'Asymmetric Synthesis', vol. 3,
	Stereodifferentiating Addition Reactions, part B, Academic Press,
	New-York, 1984, p. 97.
2	Bernhard W., Fleming I., Waterson D., J. Chem. Soc., Chem. Commun.
	1984, 28-29.
3	Yamamoto Y., Maruyama K., J. Chem. Soc., Chem. Commun., 1984, 904-905.
4	McGarvey G. J., Williams J. M., J. Am. Chem. Soc., 1985, 107
	1435-1437.
5	Fleming I., Lewis J. J., J. Chem. Soc., Chem. Commun., 1985, 149-151.
6	Fleming I., Hill J. H. M., Parker D., Waterson D., J. Chem. Soc., Chem.
	Commun., 1985, 318-321.
7	Kawasaki H., Tomioka K., Koga K., Tetrahedron Lett., 1985,
	26 , 3031–3034.
8	Fleming I., Kilburn J. D., J. Chem. Soc., Chem. Commun., 1986,
	305-306.
9	Kobayashi S., Mukaiyama T., Chem. Lett., 1986, 221-224.
10	Paddon-Row M. N., Rondan N. G., Houk K. N., J. Am. Chem. Soc., 1982,
	104, 7162-7166.
11	Duhamel L., Duhamel P., Launay JC., Plaquevent JC., Bull. Soc. Chim.
	France, 1984, II:421-430.
12	Metzner P., J. Chem. Soc., Chem. Commun., 1982, 335-336.
13	Berrada S., Metzner P., Rakotonirina R., Bull. Soc. Chim. France,
	1985, 881-890.
14	Metzner P., Rakotonirina R., Tetrahedron, 1985, 41 , 1289-1298.
15	Metzner P., Rakotonirina R., <i>Tetrahedron Lett.</i> , 1983, 24 ,
	4203-4206.
10	Berrada S., Metzner P., Bull. Soc. Chim. France, 1986, in the press.
17	Kpegba K., Metzner P., Rakotonirina R., Tetrahedron Lett., 1986,
1.0	27, 1505-1508.
10	Storer A. C., Can. J. Chem., 1982, 61, 1440-1448.
т9	Bartlett P. A., Tetrahedron, 1980, 36, 2-72.

(Received in France 26 October 1986)