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Abstract: Intervention of the enolate oxidation in the catalytic
asymmetric phase-transfer alkylation of protected a-amino acid de-
rivatives under aerobic conditions has been addressed, and anaero-
bic conditions have been introduced to obtain synthetically
satisfactory chemical yields as well as a high level of enantioselec-
tivity.
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Recently, we disclosed a broadly useful and practical pro-
cedure for the enantioselective synthesis of nonproteino-
genic a,a-dialkyl-a-amino acids under solid-liquid phase-
transfer conditions using rationally designed C2-symmet-
ric chiral quaternary ammonium salts of type 1 as cata-
lysts [(S,S)-3,4,5-trifluorophenyl-NAS-bromide [54,838-
3] and (S,S)-b-naphthyl-NAS-bromide [54,839-1] from
Aldrich Chemical Co. Ltd.].1,2 A wide variety of a,a-di-
alkyl-a-amino acids can be efficiently prepared with
enantioselectivities as high as 99% ee either by the one-
pot, double alkylation of aldimine Schiff base of glycine
tert-butyl ester or by the simple alkylation of aldimine
Schiff base 2 derived from the corresponding a-amino ac-
ids.3 Although excellent enantioselectivity was constantly
observed, the chemical yields of the products were varied
and generally modest, which prompted us to investigate
the fundamental reason for this in relation to the mecha-
nistic aspect of this asymmetric phase-transfer catalytic
alkylation. Since we performed the reaction under aerobic
conditions, it seemed conceivable that rapid oxidation of
the in situ generated enolate with molecular oxygen could
occur concurrently with the desired alkylation step, there-
by resulting in a certain decrease of the chemical yield. In
this letter, we address this problem and report the anaero-
bic conditions for the highly enantioselective alkylation of
protected a-amino acid derivatives by chiral phase-trans-
fer catalysis.

Alkylation of aldimine Schiff base derived from leucine
tert-butyl ester (2, R1 = i-Bu) with benzyl bromide (1.2
equiv) in the presence of the catalyst 1 (1 mol%) and
CsOH•H2O (5 equiv) in toluene proceeded smoothly at
0 °C under aerobic conditions to give the corresponding
benzylation product 3 (R1 = i-Bu, R2 = CH2Ph) in 64%
isolated yield with 92% ee.1 The observed asymmetric in-
duction can be interpreted for by the generally proposed
interfacial mechanism: the cesium enolate of 2 (R1 = i-Bu)
produced through interfacial deprotonation with

CsOH•H2O experiences the extremely fast ion-exchange
with 1 to give the corresponding chiral enolate that reacts
with benzyl bromide in an asymmetric fashion as illustrat-
ed in Scheme 1.4 This is consistent with the fact that at-
tempted benzylation of 2 (R1 = i-Bu) in the absence of
catalyst under otherwise similar conditions afforded the
racemic product 3 (R1 = i-Bu, R2 = CH2Ph) in 51% yield.
Based on the plausible mechanistic profile, we assumed
that the initially formed cesium enolate could be rapidly
oxidized by molecular oxygen under aerobic conditions as
also shown in Scheme 1, and this pathway would compete
with the desired alkylation, lowering the chemical yield.
Actually, upon mixing 2 (R1 = i-Bu) and CsOH•H2O (5
equiv) in toluene at 0 °C, instantaneous consumption of
the starting Schiff base was observed to furnish a deterio-
rated mixture from which p-chlorobenzamide (4) was iso-
lated (23%),5,6 while almost complete preservation of 2
(R1 = i-Bu) was confirmed after similar treatment under
argon atmosphere.

To obtain more direct and compelling evidence for the in-
tervention of the enolate oxidation with molecular oxy-
gen, we prepared ester 5 as a carbon analogue of alanine-
derived Schiff base and examined its oxidation under aer-
obic conditions. Interestingly, simple treatment of 5 with
5 equiv of CsOH•H2O in toluene at room temperature for
3.5 h resulted in formation of the corresponding a-hy-
droxy ester 6 in 41% yield, and the yield was improved to
63% by employing triethyl phosphite (1 equiv) as an ad-
ditive (Scheme 2).7 
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With this information in hand, we set out to optimize the
reaction with rigorous exclusion of air, and eventually
found that treatment of 2 (R1 = i-Bu) with benzyl bromide
(1.2 equiv) and CsOH•H2O (5 equiv) under the influence
of 1 (1 mol%) in reagent grade toluene at -25 °C for 20 h
under argon atmosphere gave rise to 3 (R1 = i-Bu,
R2 = CH2Ph) in 90% yield after acidic hydrolysis; the
enantiomeric excess was determined to be 97% ee
(Scheme 3). A synthetically satisfactory chemical yield as
well as a high level of enantioselectivity were also at-

tained in the reaction with allyl bromide. Particularly em-
phasized is the fact that catalytic asymmetric alkylation of
phenylglycine-derived aldimine Schiff base was found to
be feasible with various alkyl halides, producing the cor-
responding fully protected a,a-dialkyl-a-amino acids in
excellent yields and enantioselectivities as also included
in Scheme 3.8 This represents an attractive feature of our
procedure in light of the formidable difficulty encoun-
tered in the direct arylation of a-amino acid-derived sub-
strate in an asymmetric fashion. It should be noted that the
benzylation of 2 (R1 = Ph) under aerobic conditions
showed gradual decomposition of 2 (R1 = Ph) at -40 °C
for 25 h and the desired alkylation product 3 (R1 = Ph,
R2 = CH2Ph) was obtained in only 10% yield with 82% ee.
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