Synthesis of 3-Deoxy-5-*O*-mycaminosyltylonolide and 3-Deoxy-5-*O*-(4-deoxymycaminosyl)tylonolide

Shunji Kageyama, Tsutomu Tsuchiya,* Sumio Umezawa, and Masaya Orita†

Institute of Bioorganic Chemistry, 1614 Ida, Nakahara-ku, Kawasaki 211

†Central Research Laboratories Yamanouchi Pharmaceutical Co., Ltd.,
21 Miyukigaoka, Tsukuba, Ibaraki 305

(Received July 18, 1992)

The title compounds, which proved highly antibacterial, have been prepared by selective hydrogenation of the corresponding 2,3-unsaturated compounds with LiAlH₄, diisobutylaluminium hydride, or NaBH₄-NiCl₂ as the key steps. Further, the latter title compound was prepared effectively through the reaction of 3-O-benzylsulfonyl-5-O-(4-deoxy-4-iodomycaminosyl)-23-O-(dimethylthexylsilyl)tylonolide 9,20-bis(ethylene acetal) with Raney Ni-K₂CO₃ involing three steps in it.

Some macrolide antibiotics such as tylosin, 1) josamycin,2) niddamycin,3) spiramycin I,4) and rosamicin5) have a hydroxyl (or acetoxyl) group at C-3 in their macrocyclic lactones. The therapeutic role of the hydroxyl group, however, has neither been discussed nor clarified. Removed of the OH-3 group will, therefore, give light to its biological role. Previously we prepared⁶⁾ a 4'-deoxymacrolide, 5-O-(4-deoxymycaminosyl)tylonolide (DT) and this compound showed remarkably enhanced antibacterial activity, compared to the parent compound, 5-O-mycaminosyltylonolide⁷⁾ (1). This is a successful example that deoxygenation exhibited a positive effect. In this paper we describe8) the synthesis of 3-deoxy-5-O-mycaminosyltylonolide (9) and 3-deoxy-5-O-(4-deoxymycaminosyl)tylonolide (13) to prove the deoxygenation effect (at C-3) or combinative deoxygenation effects (at C-3 and C-4'), respectively, on their antibacterial activity.

Results and Discussion

Sythesis of 9 is first described. The 9,20-bis(ethylene acetal) (2) of 1 had been prepared⁹⁾ first by us by treatment of the 20-(diethyl acetal) of 1 with ethylene glycol in sulfolane-benzene in the presence of an acidcatalyst coupled with Soxhlet-type apparatus. However, this method took long time (48 h) to complete, met difficulty in removing the sulfolane, and the yield of 2 was moderate (62%); the major difficulty is in the protection of the less-reactive 9-carbonyl group. Here we found that 2 was readily prepared from 1 by use of diethylene orthocarbonate¹⁰⁾ in benzene-CH₃CN in a short period (2 h) (see Experimental). The product 2 was converted into the 23-O-silyl derivative 3 by treatment with dimethylthexylsilyl (DTS) chloride, and 3 was acetylated with acetic anhydride in CH₃CN (use of pyridine as the solvent was unsuitable) to give the 2',4'di-O-acetyl derivative (4) having free OH-3, in high yield. After mesylation, the 3-O-mesyl derivative (5) was treated with ammonia in MeOH-water to give the 2,3-unsaturated product (6). Before carrying out this

reaction, direct deoxygenation of the HO-3 group was attempted; such as photochemical deoxygenation¹¹⁾ of the 3-O-acetyl derivative of 4 in HMPA-H₂O (95:5), treatment of the 2',4'-di-O-acetyl-3-O-(1-imidazolylthio-carbonyl) or 2',4'-di-O-acetyl-3-O-(phenoxythiocarbonyl) derivatives (their preparations are not described here) of 2 with¹²⁾ tributylstannane (Bu₃SnH)-azobis(isobutyronitrile) (AIBN), treatment of 3 with halogens (Br₂ and I₂) in the presence of triphenylphosphine¹³⁾ (followed by reductive dehalogenation), and treatment of the 3-O-mesyl derivative (5) with a halogenide (followed

by reductive dehalogenation). However, all of the trials failed to give the 3-deoxy or 3-halo derivatives, and when reaction occurred, 2,3-unsaturated derivatives were the major products in most cases. This led us prepare the 3-deoxy compound through the 2,3-unsaturated derivative.

Preferential hydrogenation of the 2,3-double bond without reducing the 10,11- and 12,13-double bonds was not easily attained. As catalytic hydrogenation of the 2,3-double bond by use of Pd or Pt in various reaction conditions all failed, giving only a mixture of randomly hydrogenated products, metal hydride-type of reducing reagents were tested. Treatment of 6 with NaBH4 in MeOH or in pyridine, 14) Mg in MeOH, 15) Zn-NiCl₂. 6H₂O¹⁶⁾ in aqueous methyl Cellosolve, Na[(CH₃OCH₂-CH₂O)₂AlH₂] (Red-Al by Aldrich Co.) in toluene, or Bu₃SnH-AIBN¹²⁾ in benzene all recovered the starting material; however, use of LiAlH₄ (LAH) in a ratio of LAH/6 ca. 1.7 in tetrahydrofuran (THF) (at room temperature) or diisobutylaluminium hydride (DIBAL) in a ratio of DIBAL/6 ca. 5 in toluene (-60 °C) (see Experimental) gave the desired 7 in 51 and 55% yield, respectively. Less or excess use of the reagents resulted low yield of 7 or formation of higher proportion of the

Table 1. ¹H NMR^{a)} Chemical Shifts^{b)} of 9 and 13 with 5-O-Mycaminosyltylonolide (1) and 5-O-(4-Deoxymycaminosyl)tylonolide (DT) in CDCl₀ at 27°C

in CDCl ₃ at 27 °C						
	9	1	13	DT		
H-2	1.83, 2.42	1.96, 2.53	1.84, 2.44	1.96, 2.52		
H-3	1.30, 1.44	3.85	1.26, 1.43	3.86		
H-4	1.69	1.65	1.73	1.72		
H-5	3.40	3.74	3.36	3.69		
H-6	1.99	2.16	1.97	2.06		
H-7	1.46, 1.67	1.49, 1.63	1.52, 1.73	1.62, 1.83		
H-8	2.53	2.62	2.53	2.56		
H-10	6.33	6.29	6.35	6.32		
H-11	7.29	7.33	7.30	7.34		
H-13	5.86	5.89	5.83	5.87		
H-14	2.89	2.88	2.90	2.89		
H-15	4.89	4.97	4.88	4.95		
H-16	1.60, 1.84	1.61, 1.85	1.61, 1.86	1.61, 1.84		
Me-17	0.94	0.95	0.94	0.95		
Me-18	0.98	1.02	1.05	1.09		
H-19	2.45, 2.93	2.40, 2.94	2.45, 3.00	2.46, 3.02		
H-20	9.68	9.70	9.70	9.72		
Me-21	1.22	1.22	1.21	1.21		
Me-22	1.85	1.83	1.85	1.82		
H-23	3.73, 3.73	3.75, 3.75	3.73, 3.73	3.74, 3.74		
H-1′	4.23	4.26	4.19	4.21		
H-2'	3.48	3.48	3.19	3.20		
H-3'	2.49	2.36	2.49	2.46		
H-4′	3.06	3.06	1.23, 1.60	1.20, 1.66		
H-5'	3.23	3.27	3.43	3.47		
H-6′	1.24	1.26	1.20, 1.21	1.20		
NMe-3'	2.52	2.50	2.27	2.27		

a) Measured at 500 MHz with a JEOL Alpha 500 NMR spectrometer. b) In ppm downfield from TMS. The shifts were confirmed by 2D $^{1}H^{-1}H$ and $^{1}H^{-13}C$ correlated spectra with aid of, in some cases, Hohaha method.

open lactone ring product 8, respectively. Deprotection of 7 gave the desired 3-deoxy-5-O-mycaminosyltylonolide 9.

3-Deoxy-5-*O*-(4-deoxymycaminosyl)tylonolide (13) was prepared next and this was readily obtained from 7. Preferential sulfonylation of the HO-4' of 7 was performed by use of phenylmethanesulfonyl chloride to give a slightly unstable product 10. This instability may be resulted from the neighboring Me₂N-3', which will readily attack the C-4' to give the 3',4'-aziridinium ion intermediate.¹⁷⁾ Treatmet of 10 with NaI in 2butanone gave the 4'-deoxy-4'-iodo derivative 11. The configuration of I-4' of 11 was assumed to be R, that is, the same orientation with the starting HO-4', deduced by analogy of the reaction of 14 with NaI, which is described next. Radical deiodination of 11 with Bu₃SnH-AIBN¹²⁾ gave the 4'-deoxy derivative 12, which was deprotected to give the final product 13. The structures of 9 and 13 were determined by the ¹H and ¹³C NMR spectra (Tables 1 and 2).

As 13 was prepared from 1 in 10 steps, a shorter synthetic route was searched. Sulfonylation of 3 with phenylmethanesulfonyl chloride gave selectively the

Table 2. ¹³C NMR^{a)} Chemical Shifts^{b)} of 9 and 13 with 5-O-Mycaminosyltylonolide (1) and 5-O-(4-Deoxymycaminosyl)tylonolide (DT) in CDCl₃ at 27 °C

22 2.0 at 2,						
Carbon	9	1	13	DT		
1	173.3	174.0	173.4	173.9		
2	32.2	39.5	32.3	39.6		
2 3	27.8	68.0	27.7	67.2		
4	35.9	40.3	36.1	40.9		
5	83.2	81.4	83.6	81.0		
6	31.5	32.0	31.3	31.4		
7	31.8	32.7	31.8	32.4		
8	44.7	44.5	44.9	44.9		
9	203.4	203.5	203.7	203.5		
10	118.6	119.0	118.5	118.6		
11	148.0	148.0	147.9	147.9		
12	136.3	136.1	136.4	136.1		
13	141.6	141.6	141.4	141.7		
14	47.2	47.2	47.1	47.2		
15	74.3	75.0	74.2	74.8		
16	25.7	25.6	25.6	25.5		
17	9.6	9.6	9.5	9.7		
18	15.6	8.9	15.2	8.7		
19	43.4	43.8	43.5	43.8		
20	202.1	203.0	202.4	203.5		
21	17.5	17.3	17.5	17.5		
22	13.2	13.1	13.2	13.0		
23	62.6	62.5	62.6	62.4		
1'	103.7	104.0	104.2	104.2		
2'	71.0	70.9	70.3	70.3		
3′	70.1	70.2	65.6	65.6		
4′	70.8	70.8	28.4	28.4		
5′	73.2	73.1	69.5	69.5		
6′	17.7	17.8	21.0	21.0		
N-Me ₂	41.7	41.7	40.2	40.2		

a) Measured at 125 MHz with a JEOL Alpha 500 NMR spectrometer. b) In ppm downfield from TMS. The shifts were confirmed by 2D ¹H-¹³C correlated spectra.

3,4'-bis(O-benzylsulfonyl) derivative (14). If, in this reaction, tosyl chloride or mesyl chloride was used instead, the corresponding 4'-O-tosyl or 3,2',4'-tri-Omesyi derivative was the major product formed, respectively. This means that the bulk of benzylsulfonyl group is suitable for this reaction. Treatment of 14 with NaI similarly as described for 11 gave the 4'-iodo derivative (15) with the 3-O-benzylsulfonyl group remained intact. To determine the configuration at C-4', the splitting pattern of the H-4' in its ¹H NMR spectrum was searched, but the signals (δ =ca. 3.5 in C₆D₆) were overlapped with many other ones. However, irradiation of Me-6' (δ=1.65) converted the isolated multiplet (δ =3.84) of H-5 into a clear doublet $(J_{4.5}=10.4 \text{ Hz})$, which indicates that H-4' should be axial. This result shows that iodine was introduced at C-4' with retention of configuration. The mechanism may be explained as that the initially formed galacto-3',4'-aziridinium ion intermediate¹⁷) having a half-chair

conformation $(_1H^\circ)$ is iodinated through the Skew form to give 15 (route ii). However, this mechanism is against the Fürst-Plattner rule (trans-diaxial ring opening) of epimines; we propose therefore that intermediate will first be opened, according to the rule (route i) to give the unstable 4'-dimethylamino-3'-iodogulopyranoside (I), and then the I, which is equilibrated with the intermediate (1H°), is gradually converted into the thermodynamically more stable 3'-dimethylamino-4'iodogluco deriative (15) therough the 1Ho form, as shown below. A similar reaction mechanism was reported by us in the fluorinations of 3,23-di-O-acetyl-5-O-(4-O-benzylsulfonyl- β -D-mycaminosyl)tylonolide 9,20-bis(ethylene acetal)¹⁷⁾ and 2,3-allo-(N-tosylepimine)s. 18) No isolation of I in the present reaction will be ascribed to its instability caused by the low C-I bond energy, compared to C-F. Compound 15 was then treated with NH₃ in aq MeOH as described for 6 to give the 2,3-unsaturated product (17) by removal of the elements of phenylmethanesulfonic acid. Reductive deiodination of 17 gave 18. Here the selective hydrogenation of the 2,3-double bond was again tested using the reducing agents described before and CuI-MeLi-DIBAL¹⁹⁾ (18 was recovered), NaBH₄-DMF (to give 18 and glycoside-cleaved products), and KB[CH(CH₃)-C₂H₅]H²⁰⁾ (K-Selectride by Aldrich Co.) (to give 19 and glycoside-cleaved products). Among them, LAH in THF, and NaBH₄-NiCl₂²¹⁾ in MeOH were found to give 12 in good to high yields, respectively (52 and 82%; see Experimental). These synthetic routes made the reaction steps reduce to 8, increasing the overall yields of 13 to 17-25%. At this stage, to examine the role of the protecting group at C-23, the 23-de(O-DTS) derivative (19) of 18 was prepared, and it was treated with several reducing agents involving LAH-THF or NaBH₄-NiCl₂-MeOH [compound 19 was prepared from DT through its 9,20-bis(ethylene acetal) (16)]. However, in these reactions, 10,11- and/or 12,13-double bonds were par-

Scheme 1.

tially reduced along with the 2,3-double bond giving a mixture of products involving 12. This indicates that the protection of the HO-23 is necessary; this suggests that the HO-23 attracts the reagents to come close to the double bonds making reaction with them.

As described above, we can have 13 in good yield, however, for large-scale preparation, further rising of the yield and reduction of the steps with avoiding the troublesome procedure were necessary. After fruitless trials, we found that the use of Raney nickel- K_2CO_3 readily gave 12 in one step from 15 in high yield (40% 13 from 1); in this reaction, selective deiodination at C-4', 2,3-double bond formation, and selective hydrogenation of the double bond occurred simultaneously.

The synthetic 3-deoxy (9) and 3,4'-dideoxy compounds (13) showed⁸⁾ stronger antibacterial activities than 5-O-mycaminosyltylonolide,⁷⁾ josamycin,²⁾ and erythromycin. Characteristic feature was that they showed⁸⁾ activity against Gram-negative bacteria, and 13 showed strong activity against *Haemophillis influenzae* IID 985. As the corresponding 2,3-unsaturated analog²²⁾ of 13 gave approximately one-half of the activity of 13, deoxygenation at C-3 was suggested to be an important factor to enhance antibacterial activity.

Experimental

General. Optical rotations were determined with a Perkin-Elmer 241 polarimeter. 1 H NMR spectra were recorded with a Bruker WM 250 (250 MHz) or JEOL Alpha 500 (500 MHz) spectrometers, and the chemical shifts (δ) were measured downfield from internal Me₄Si. Mass spectra (MS) were determined using fast atom bomberdment method and the data are recorded as m/z. Thin-layer chromatography (TLC) was performed on Kieselgel 60 F₂₅₄ (Merck), and column chromatography on Wakogel C-200.

5-O-Mycaminosyltylonolide 9,20-Bis(ethylene acetal) (2). A mixture of ethylene glycol (0.3 ml, 5.4 mmol) and ptoluenesulfonic acid monohydrate (34 mg, 0.18 mmol) in benzene (2 ml) was refluxed for 2 h, coupled with Dean-Stark trap (azeotropic distillation). After cooled, tetramethyl orthocarbonate (0.32 ml, 2.4 mmol) was added, and the solution was kept for 2 h at room temperature. To this was added a solution of 1 (100 mg, 0.17 mmol) and anhydrous ptoluenesulfonic acid (36 mg, 0.21 mmol) in dry CH₃CN (1.5 ml), and the mixture was kept for 2 h at room temperature. The solution was poured into aq NaHCO₃ (saturated, 10 ml) under stirring and the mixture was extracted with benzene. The organic layer was dried (MgSO₄) and concentrated. The residue was chromatographed with CHCl₃-MeOH-28% aq NH_3 (30:1:0.1 \rightarrow 10:1:0.1) to give a solid of 2, 80 mg (70%), identical with the specimen reported.9)

23-O-(Dimethylthexylsilyl)-5-O-mycaminosyltylonolide 9,20-Bis(ethylene acetal) (3). To a solution of 2 (1.00 g, 1.46 mmol) in dry DMF (8 ml) were added dimethylthexylsilyl chloride (0.43 ml, 2.19 mmol) and imidazole (0.2 g), and the solution was kept at room temperature for 6 h. After concentration, the residue was dissolved in CHCl₃, and the solution was washed with water, dried (MgSO₄), and concentrated. The residue was chromatographed with CHCl₃-CH₃OH-aq 28% NH₃ (15:1:0.1) to give a solid of 3, 1.12 g (93%),

[α] β ' = 9°(c 1, CHCl₃); ¹H NMR (CDCl₃) δ = 0.07 (6H, s, SiMe₂), 0.84 (6H, s, SiCMe₂), 0.88 (6H, d, SiCCH<u>Me₂</u>), 1.33 (3H, d, Me-6'), 1.71 (3H, br s, Me-22), 2.35 (1H, t, $J_{2',3'}=J_{3',4'}=10$ Hz, H-3'), 2.48 (6H, s, Me₂N-3'), 3.00 (1H, t, $J_{4',5'}=10$ Hz, H-4'), 4.30 (1H, d, $J_{1',2'}=8$ Hz, H-1'), 5.40 (1H, br d, $J_{13,14}=10$ Hz, H-13), 5.69 (1H, d, $J_{10,11}=16$ Hz, H-10), and 6.31 (1H, d, H-11); MS m/z 828 (M⁺+1).

Found: C, 61.95; H, 9.20; N, 1.68%. Calcd for $C_{43}H_{77}$ -NO₁₂Si: C, 62.36; H, 9.37; N, 1.69%.

5-*O*-(2,4-Di-*O*-acetylmycaminosyl)-23-*O*-(dimethylthexylsilyl)tylonolide 9,20-Bis(ethylene acetal) (4). To a solution of 3 (2.20 g) in dry CH₃CN (22 ml) was added acetic anhydride (0.6 ml) and the solution was kept overnight at room temperature. After concentration, the residue dissolved in toluene was washed with aq NaHCO₃ (saturated), dried (MgSO₄), and concentrated. The residue was purified by a short column with cyclohexane-acetone (7:2) to give a solid of 4, 2.04 g (84%), $[\alpha]_{15}^{25}$ -40° (*c* 1, CHCl₃); ¹H NMR (CDCl₃) δ =1.17 (3H, d, Me-6'), 2.00 and 2.04 (each 3H, s, Ac×2), 2.33 (6H, s, Me₂N-3'), 2.76 (1H, t, H-3'), 4.66 (1H, br d, H-1'), 4.75 (1H, t, H-4'), 4.94 (1H, dd, H-2'), 5.41 (1H, br d, H-13), 5.65 (1H, d, H-10), and 6.36 (1H, d, H-11); MS m/z 912 (M⁺+1).

Found: C, 61.79; H, 8.96; N, 1.48%. Caled for $C_{47}H_{81}$ -NO₁₄Si: C, 61.88, H, 8.95; N, 1.54%.

5-*O*-(2,4-Di-*O*-acetylmycaminosyl)-23-*O*-(dimethylthexylsilyl)-3-*O*-mesyltylonolide 9,20-Bis(ethylene acetal) (5). To a solution of 4 (7.00 g) in dry pyridine (2 ml) was added methanesulfonyl chloride (0.18 ml), and the solution was kept for 3 h at room temperature. The solution was poured into aq NaHCO₃ (saturated) under vigorous stirring and the mixture was extracted with toluene. The product obtained by evaporation was purified by a short column with cyclohexaneacetone (3:1) to give a solid of 5, 723 mg (95%), $[\alpha]_{55}^{8}$ -51° (*c* 1, CHCl₃); ¹H NMR (CDCl₃) δ =2.02 and 2.04 (each 3H, s, Ac×2), 2.33 (6H, s, Me₂N-3'), 3.15 (3H, s, Ms), 5.46 (1H, br d, H-13), 5.57 (1H, d, H-10), and 6.35 (1H, d, H-11); MS m/z 990 (M⁺+1).

Found; C, 58.04; H, 8.62; N, 1.36%. Calcd for $C_{48}H_{83}$ -NO₁₆S Si: C, 58.22; H, 8.45; N, 1.41%.

3-Deoxy-2,3-didehydro-23-O-(dimethylthexylsilyl)-5-Omycaminosyltylonolide 9,20-Bis(ethylene acetal) (6). To a solution of 5 (51 mg) in MeOH (1 ml) was added 28% aq NH₃ (0.5 ml) and the solution was kept for 3 h at room temperature (2,3-double bond formation with partial removal of the 2'- and 4'-O-acetyl groups). After concentration, the residue dissolved in MeOH (1 ml) was heated overnight at 50 °C (deacetylation). The solution was concentrated and the residue dissolved in CHCl₃ was washed with water, dried (MgSO₄), and concentracted. The residual syrup was purified by a short column with CHCl₃-MeOH-28% aq NH₃ (15:1:0.1) to give a solid of 6, 39.9 mg (96%), $[\alpha]_{6}^{25}$ -34° (c 1, CHCl₃); ¹H NMR (CDCl₃) δ =0.07 (6H, s), and 0.84 (6H, s), and 0.87 (6H, d) (Me \times 6 of dimethylthexylsilyl), 0.95 (3H, t, J=7.5 Hz, Me-17), 1.02 (3H, d, $J_{8,21}$ =7 Hz, Me-21), 1.12 (3H, d, $J_{4,18}$ =7 Hz, Me-18), 1.32 (3H, d, Me-6'), 1.71 (3H, br s, Me-22), 2.36 (1H, t, H-3'), 2.49 (6H, s, Me₂N-3'), 3.05 (1H, t, H-4'), 3.57 (1H, dd, $J_{1',2'}=7.5$ and $J_{2',3'}=10$ Hz, H-2'), 4.35 (1H, d, H-1'), 5.00 (1H, m, H-20), 5.32 (1H, br d, $J_{13.14}$ =11 Hz, H-13), 5.49 $(1H, d, J_{10.11}=16 Hz, H-10), 5.58 (1H, d, J_{2.3}=16 Hz, H-2), 6.25$ (1H, d, H-11), and 6.74 (1H, dd, $J_{3,4}=10$ Hz, H-3); MS m/z $810 (M^{+}+1).$

Found: C, 63.47; H, 9.36; N, 1.68%. Calcd for $C_{43}H_{75}$ -NO₁₁Si: C, 63.75; H, 9.33; N, 1.73%.

3-Deoxy-23-O-(dimethylthexylsilyl)-5-O-mycaminosyltylonolide 9,20-Bis(ethylene acetal) (7) and a By-product (8). To a cold ($-60\,^{\circ}$ C) solution of 6 (2.00 g, 2.45 mmol) in dry toluene (80 ml) was added dropwise 1.5 M DIBAL (1 M=1 mol dm⁻³) in toluene (7.4 ml), and the solution was kept at the temperature for 30 min. In TLC with CHCl₃-CH₃OH-28% aq NH₃ (10:1:0.1), the solution showed mainly three spots at R_f 0.4, 0.25, and 0.2. Excess DIBAL was destroyed by addition of Na₂SO₄·10 H₂O (powder, 3 g), and the mixture was neutralized with 1 M aq AcOH (22 ml). After addition of CHCl₃ (600 ml), the organic solution was washed with aq NaCl (saturated), dried (MgSO₄), and concentrated. The residue was chromatographed with CHCl₃-MeOH-28% aq NH₃ (18:1:0.1) to give solids of 7, 1.09 g (55%), 8, 0.59 g (29%), and a mixture of 8 and a product of R_f 0.2, 0.31 g.

Found: C, 63.08; H, 9.49; N, 1.73%. Calcd for $C_{43}H_{77}NO_{11}Si \cdot 0.5 \ H_2O$: C, 62.89; H, 9.57; N, 1.71%.

Compounds: 8: $[\alpha]_{1}^{2}$ -27° (c 1, CHCl₃); ¹H NMR (CDCl₃-C₆D₆=1:1) δ =0.06 (6H, s), 0.84 (6H, s), and 0.88 (6H, d) (Me ×6 of dimethylthexylsilyl). 0.94 (3H, t, Me-17), 1.09 (3H, d, $J_{4,18}$ =7 Hz, Me-18), 1.13 (3H, d, Me-21), 1.36 (3H, d, Me-6′), 1.72 (3H, br s, Me-22), 2.43 (6H, s, Me₂N-3′), 3.06 (1H, t, H-4)′, 4.03 (2H, d, $J_{1,2}$ =5 Hz, H-1), 4.31 (1H, d, H-1′), 4.92 (1H, m, H-20), 5.55 (1H, d, $J_{10,11}$ =16 Hz, H-10), 5.64 (1H, dd, $J_{2,3}$ =16 Hz, H-2), 5.68 (1H, br d, $J_{13,14}$ =10 Hz, H-13), 5.75 (1H, dd, $J_{3,4}$ =8 Hz, H-3), and 6.48 (1H, d, H-11); MS m/z 814 (M⁺+1).

3-Deoxy-5-O-mycaminosyltylonolide (9). To a solution of 7 (600 mg) in THF (9 ml) was added 1 M Bu₄NF in THF (1.1 ml) and the solution was kept for 5 h at room temperature. TLC (CHCl₃-MeOH-28% aq NH₃=10:1:0.1) of the solution showed a single spot at R_f 0.3. Concentration gave a residue, that was extracted with CHCl₃. The organic solution was washed with water, dried (MgSO₄), and concentrated. The residue dissolved in CH₃CN (6 ml) was mixed with 0.1 M aq HCl (24 ml) and the turbid solution was stirred for 5 h at room temperature, to give a clear solution. Addition of aq NaHCO₃ (saturated, 60 ml) followed by extraction of the mixture with CHCl₃ gave a crude product, that was chromatographed with CHCl₃-MeOH-28% aq NH₃ (15:1:0.1) to give a solid of 9, 383 mg (89%), $[\alpha]_{1}^{24}$ -23° (c 1, CHCl₃); MS m/z 582 (M⁺+1).

Found: C, 62.29; H, 8.80; N, 2.29%. Calcd for $C_{31}H_{51}NO_9 \cdot H_2O$: C, 62.08; H, 8.73; N, 2.33%.

5-O-[4-O-(Benzylsulfonyl)mycaminosyl]-3-deoxy-23-O-(dimethyltheoxylsilyl)tylonolide 9,20-Bis(ethylene acetal) (10). To a cold (-40 °C) solution of 7 (1.30 g, 1.60 mmol) in dry pyridine (26 ml) was added phenylmethanesulfonyl chloride (459 mg, 2.40 mmol), and the solution was kept at the temperature for 3 h. Water (0.5 ml) was added, and the solution was warmed to room temprature. In TLC with cyclohexaneacetone (7:2), the solution showed a major spot at $R_{\rm f}$ 0.3. Concentration gave a residue, that was extracted with CHCl₃. The organic solution was washed with aq NaHCO₃ (satu-

rated), dried (MgSO₄), concentrated, and the residue was dried under vacuum to give 10 as a slightly unstable solid, 1.55 g, which was used in the next step without purification.

3-Deoxy-5-O-(4-deoxy-4-iodomycaminosyl)-23-O-(dimethylthexylsilyl)tylonolide 9,20-Bis(ethylene acetal) (11). To a solution of 10 (1.56 g) in dry 2-butanone (24 ml) was added NaI (366 mg), and the mixture was stirred, under the atmosphere of N₂, for 30 min at 80 °C. In TLC with cyclohexane-acetone (7:2), the solution showed a major spot at R_1 0.4. Concentration gave a residue, that was extracted with EtOAc. The organic solution was washed with 0.1 M aq Na₂S₂O₃ and water, dried (MgSO₄), and concentrated. The residual syrup was chromatographed with cyclohexane-acetone (7:2) to give a solid of 11, 1.04 g (71 % based on 7), $[\alpha]_0^{\text{Pl}}$ -73° (c 1, CHCl₃); Ms m/z 922 (M⁺+1).

Found: C, 56.39; H, 8.24; N, 1.46; I, 14.14%. Calcd for $C_{43}H_{76}INO_{10}Si:$ C, 56.01; H, 8.31; N, 1.56; I, 13.76%.

3-Deoxy-5-O-(4-deoxymycaminosyl)-23-O-(dimethylthexylsilyl)tylonolide 9,20-Bis(ethylene acetal) (12) From 11. To a solution of 11 (1.04 g, 1.13 mmol) in dry benzene (20 ml) were added Bu₃SnH (0.91 ml, 3.4 mmol) and AIBN (37 mg), and the solution was heated under the atmosphere of N2 for 2 h at 80 °C. Concentration gave a residue, that was chromatographed by successive use of cyclohexane-acetone (3:1, 500 ml) \rightarrow CHCl₃ (600 ml) \rightarrow CHCl₃-MeOH-28% aq NH₃ (10:1:0.1) to give a stannane-free solid of 12, 790 mg (88%), $[\alpha]_{6}^{20}$ -38° (c 1, CHCl₃); ¹H NMR (CDCl₃) δ =0.06 (6H, s), 0.83 (6H, s), and 0.87 (6H, d), (Me \times 6 of dimethylthexylsilyl), 0.91 (3H t, Me-17), 0.96 (3H, d, Me-18), 1.01 (3H, d, Me-21), 1.24 (3H, d, Me-6'), 1.73 (3H, br s, Me-22), 2.40 (6H, s, Me₂N-3'), 3.33 (1H, dd, $J_{1',2'}=7$ and $J_{2',3'}=10$ Hz, H-2'), 4.29 (1H, d, H-1'), 4.99 (1H, br t, H-20), 5.38 (1H, br d, H-13), 5.60 (1H, d, $J_{10,11}$ =16 Hz, H-10), and 6.38 (1H, d, H-11); MS m/z 796 $(M^{+}+1).$

Found: C, 64.55; H, 9.75; N, 1.71%. Calcd for $C_{43}H_{77}$ -NO₁₀Si: C, 64.87; H, 9.75; N, 1.76%.

From 15. To a solution of 15 (305 mg, 0.28 mmol) in MeOH (6 ml) were added Raney Ni (0.5 ml) and anhydrous K_2CO_3 (116 mg, 0.84 mmol), and the mixture was shaken under the atmosphere of H_2 for 3 h at room temprature. After filtration, the solution was concentrated, and the residue was extracted with CHCl₃. The crude product obtained was chromatographed with CHCl₃-MeOH-28% aq NH₃ (15:1: 0.1) to give a solid of 12, 194 mg (87%), which was identical with the specimen prepared from 11 in all respects.

From 18 with LAH. To an ice-cold solution of 18 (10.0 g, 12.6 mmol) in THF (200 ml) was added LAH (960 mg, 25.2 mmol), and the mixture was stirred for 30 min at the temperature. Addition of powdered Na₂SO₄·10H₂O (15 g; to destroy the excess LAH) followed by aq NH₄Cl (saturated, 30 ml) gave a neutral mixture. It was concentrated and the residue was extracted with toluene. The crude product obtained was chromatographed with CHCl₃-MeOH-28% aq NH₃ (15:1:0.1) to give a solid of 12, 5.21 g (52%).

From 18 with NaBH₄-NiCl₂. To a solution of 18 (100 mg, 0.13 mmol) in MeOH (2 ml) was added NiCl₂·6H₂O (15 mg, 0.063 mmol) and the solution was cooled to 0°C. To the solution was added piece by piece NaBH₄ (73 mg, 1.9 mmol) within 8 h. The resulting black suspension was poured into aq NH₄Cl (saturated, 6 ml) and the whole mixture was extracted with EtOAc. The organic solution was washed with water, dried (MgSO₄), and concentrated. The residue was chromatographed with CHCl₃-MeOH-28% aq NH₃

(17:1:0.1) to give a solid of 12, 81.9 mg (82%).

3-Deoxy-5-O-(4-deoxymycaminosyl)tylonolide (13). A solution of 12 (730 mg) in THF (12 ml) was treated similarly as described for 9 to give, after column chromatography with CHCl₃-MeOH-28% aq NH₃ (12:1:0.1), a solid of 13, 511 mg (99%), $[\alpha]_3^{19}$ -21° (c 1, CHCl₃); MS m/z 566 (M⁺+1).

Found: C, 63.81; H, 8.80; N, 2.50%. Calcd for $C_{31}H_{51}$ - $NO_8 \cdot H_2O$: C, 63.78; H, 8.97; N, 2.40%.

3-O-Benzylsulfonyl-5-O-[4-O-(benzylsulfonyl)mycaminosyl]-23-O-(dimethylthexylsilyl)tylonolide 9,20-Bis(ethylene acetal) (14). To a cold (-40 °C) solution of 3 (100 mg, 0.12 mmol) in dry pyridine (2 ml) was added phenylmethanesulfonyl chloride (58 mg, 0.30 mmol) and the solution was kept at -20 °C for 1.5 h. Water (0.06 ml) was added, and the solution was gradually warmed to room temperature. After concentration to one-forth of its volume, the reaction mixture was extracted with toluene. The organic solution was then treated as described for 10 to give 14 as a slightly unstable solid, 132 mg, which was used to the next step without purification.

3-*O*-Benzylsulfonyl-5-*O*-(4-deoxy-4-iodomycaminosyl)-23-*O*-(dimethylthexylsilyl)tylonolide 9,20-Bis(ethylene acetal) (15). A mixture of 14 (132 mg, 0.12 mmol) and NaI (27 mg, 0.18 mmol) in 2-butanone (2.6 ml) was treated similarly as described for 11, to give, after column cloromatography (cyclohexane-acetone 7: 2), a solid of 15, 93.6 mg (71% based on 3), TLC (benzene-EtOAc 4:1): $R_{\rm f}$ 0.55, $[\alpha]_{\rm fo}^{\rm po}$ -54° (*c* 1, CHCl₃); ¹H NMR (500 MHz, $C_{\rm fo}D_{\rm fo}$) δ =0.04 (6H, s), 0.87 (6H, d), and 0.87 (6H, s) (Me ×6 of dimethylthexylsilyl), 1.645 (3H, d, Me-6'), 1.651 (3H, s, Me-22), 2.40 (6H, s, Me₂N-3'), 2.72 (1H, t, H-3'), 3.84 (1H, m, H-5'), 4.34 (2H, br s, PhC $\underline{\rm H}_2$ SO₂), 4.69 (1H, d, $J_{1',2'}$ =7 Hz, H-1'), 5.66 (1H, d, $J_{13,14}$ =10.5 Hz, H-13), 5.82 (1H, d, $J_{10,11}$ =15.5 Hz, H-10), and 6.66 (1H, d, H-11); MS m/z 1092 (M⁺+1).

Found: C, 54.86; H, 7.50; N, 1.18; I, 11.61%. Calcd for $C_{50}H_{82}INO_{13}S$ Si: C, 54.98; H, 7.57; N, 1.28; I, 11.62%.

3-Deoxy-5-O-(4-deoxy-4-iodomycaminosyl)-2,3-didehydro-23-O-(dimethylthexylsilyl)tylonolide 9,20-Bis(ethylene acetal) (17). To a solution of 15 (18.0 g) in MeOH (750 ml) was added 28% aq NH₃ (100 ml), and the solution was treated similarily as described for 6 to give, after column chromatography (hexane-acetone 7:2), a solid of 17, 11.5 g (76%), TLC (benzene-EtOAc 4:1): R_f 0.6, $[\alpha]_{\rm P}^{\rm SO}$ -51° (c 1, CHCl₃); ¹H NMR (CDCl₃) δ=0.08 (6H, s,), 0.84 (6H, s), and 0.88 (6H, d), (Me ×6 of dimethylthexylsilyl), 1.70 (3H, br s, Me-22), 2.60 (6H, s, Me₂N-3'), 4.37 (1H, d, H-1'), 4.97 (1H, m, H-20), 5.30 (1H, br d, $J_{13,14}$ =10 Hz, H-13), 5.48 (1H, d, $J_{10,11}$ =16 Hz, H-10), 5.59 (1H, d, $J_{2,3}$ =16 Hz, H-2), 6.27 (1H, d, H-11), and 6.75 (1H, dd, $J_{3,4}$ =10 Hz, H-3); MS m/z 920 (M⁺⁺1).

Found: C, 56.08; H, 8.08; N, 1.41; I, 13.98%. Calcd for C₄₃H₇₄NIO₁₀Si: C, 56.14; H, 8.11; N, 1.52; I, 13.79%.

3-Deoxy-5-*O*-(4-deoxymycaminosyl)-2,3-didehydro-23-*O*-(dimethylthexylsilyl)tylonolide 9,20-Bis(ethylene acetal) (18). To a solution of 17 (67.5 g, 73.4 mmol) in dry benzene (1 dm³) were added, under the atmosphere of Ar, tributylstannane (59 ml, 220 mmol) and AIBN (2.5 g) and the solution was treated similarly as described for 12 to give, after column chromatographies [silica gel 750 g; hexane–acetone (3:1, 5 dm³) \rightarrow CHCl₃ (3 dm³) \rightarrow CHCl₃–MeOH–28% aq NH₃ (15:1:0.1)], a solid of 18, 52.0 g (89%), [α]% –20° (*c* 1, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ=0.07 (6H, s, MeSi), 1.25 (3H, d, Me-6'), 1.70 (3H, d, Me-22), 2.27 (6H, s, Me₂N-3'), 4.31 (1H, d, H-1'), 5.05 (1H, br s, H-20), 5.29 (1H, d, H-13), 5.48 (1H, d, *J*=16 Hz, H-10) and

5.58 (1H, d, J=16 Hz, H-2), 6.25 (1H, d, H-11), and 6.76 (1H, dd, J_{3,4}=9.3 Hz, H-3); MS m/z 794 (M⁺+1).

Found: C, 64.45; H, 9.46; N, 1.69%. Calcd for $C_{43}H_{75}$ -NO₁₀Si · 0.5 H₂O: C, 64.30; H, 9.53; N, 1.74%.

5-O-(4-Deoxymycaminosyl)tylonolide 9,20-Bis(ethylene acetal) (16). Compound DT (1.00 g, 1.72 mmol) was treated similarly as described for 2 to give a solid of 16, 944 mg (82%), $\lceil \alpha \rceil \% -5^{\circ}$ (c 1, CHCl₃); MS m/z 670 (M⁺+1).

Found: C, 62.54; N, 8.96; N, 2.07%. Calcd for $C_{35}H_{59}$ - NO_{11} : C, 62.76; H, 8.88; N, 2.09%.

3-Deoxy-5-O-(4-deoxymycaminosyl)-2,3-didehydrotylonolide 9,20-Bis(ethylene acetal) (19). To a solution of 16 (800 mg, 1.20 mmol) in pyridine-DMF (4:1, 8 ml) was added acetic anhydride (3.0 ml, 27 mmol) and the solution was heated for 24 h at 60 °C (peracetylation). After concentration to a small volume, the concentrate was extracted with toluene. The organic solution was washed with aq NaHCO₃ and water (removal of DMF), dried (MgSO₄), and concentrated. The residue was dissolved in MeOH (16 ml) and, after addition of K₂CO₃ (825 mg, 6 mmol), the mixture was stirred overnight at room temperature. Concentration followed by extraction of the residue with CH2Cl2 gave a solid, that was chromatographed with CHCl3-MeOH-aq 28% NH3 (17:1:0.1) to give a solid of 19, 561 mg (72%), $[\alpha]_{6}^{20}$ -10° (c 1, CHCl₃); ¹H NMR (500 MHz, CDCl₃), δ =0.97 (3H, t, Me-17), 1.02 (3H, d, Me-21), 1.21 (3H, d, Me-18), 1.25 (3H, d, Me-6'), 1.75 (3H, d, Me-22), 2.27 (6H, s, Me₂N-3'), 4.31 (1H, d, $J_{1',2'}$ =7.3 Hz, H-1'), 5.29 (1H, d, $J_{13,14}$ =10.4 Hz, H-13), 5.52 (1H, d, $J_{10,11}$ =15.6 Hz, H-10?), 5.60 (1H, d, $J_{2,3}$ =15.6 Hz, H-2?), 6.29 (1H, d, H-11), 6.79 (1H, dd, $J_{3,4}$ =9.5 Hz, H-3); MS m/z 652 (M⁺+1).

Found: C, 63.07; H, 8.74; N, 2.02%. Calcd for $C_{35}H_{57}$ - $NO_{10} \cdot H_2O$: C, 62.76; H, 8.88; N, 2.09%.

References

- 1) J. M. McGuire, W. S. Boniece, C. E. Higgens, M. M. Hoehn, W. Stark, J. Westhead, and R. N. Wolfe, *Antibiot. Chemother. Basel.* (1954—1968), 11, 320 (1961).
- 2) T. Osono, Y. Oka, S. Watanabe, Y. Numazaki, K. Moriyama, H. Ishida, K. Suzaki, Y. Okami, and H. Umezawa, J. Antibiot., 20, 173 (1967).
- 3) G. Huber, K. H. Wallhäußer, L. Fries, A. Steigler, and H. Weidenmüller, *Arzneim.-Forsch.*, 12, 1191 (1962).
- 4) S. Pinnert-Sindico, L. Ninet, J. Preud'Homme, and C. Cosan, *Antibiot. Annu.*, 1955, 724.
- 5) G. H. Wagman, J. A. Waitz, J. Marquez, A. Murawski, E. M. Oden, R. T. Testa, and M. J. Weinstein, *J. Antibiot.*, 25, 641 (1972).
- 6) A. Tanaka, T. Tsuchiya, S. Umezawa, and H. Umezawa, J. Antibiot., 34, 1374 (1981).
- 7) R. L. Hamill, M. E. Haney, Jr., M. Stamper, and P. F. Wiley, *Antibiot. Chemothr. (Basel.)*, 11, 328 (1961).
- 8) Short Communication: S. Kageyama, T. Tsuchiya, S. Umezawa, and T. Takeuchi, J. Antibiot., 45, 144 (1992).
- 9) S. Sakamoto, T. Tsuchiya, S. Umezawa, and H. Umezawa, Bull. Chem. Soc. Jpn., 60, 1481 (1987).
- 10) D. H. R. Barton, C. C. Dawes, and P. D. Magnus, J. Chem. Soc., Chem. Commun., 1975, 432.
- 11) H. Deshayes, J. P. Pete, C. Protella, and D. Scholler, J. Chem. Soc., Chem. Commun., 1975, 439.
- 12) D. H. R. Barton and S. W. McCombie, *J. Chem. Soc.*, *Perkin Trans. I*, **1975**, 1574; M. J. Robins and J. S. Wilson, *J. Am. Chem. Soc.*, **103**, 932 (1981).

- 13) A. K. M. Anisuzzaman and R. L. Whistler, *Carbohydr. Res.*, **61**, 511 (1978).
- 14) W. R. Jacson and A. Zurqiyah, J. Chem. Soc., 1965, 5280.
- 15) T. Hudlicky, G. Sinai-Zingde, and M. G. Natchus, *Tetrahedron Lett.*, **28**, 5287 (1987).
- 16) C. Petrier and J. L. Luche, *Tetrahedron Lett.*, 28, 2347 (1987).
- 17) S. Kageyama, T. Onoda, T. Tsuchiya, S. Umezawa, and H. Umezawa, *Carbohydr. Res.*, 169, 241 (1987).
- 18) Y. Kobayashi, T. Tsuchiya, T. Ohgi, N. Taneichi, and

- Y. Koyama, Carbohydr. Res., 230, 89 (1992).
- 19) T. Tsuda, T. Hayashi, H. Satomi, T. Kawamoto, and T. Saegusa, J. Org. Chem., 51, 537 (1986).
- 20) B. Ganem and J. M. Fortunato, J. Org. Chem., 40, 2846 (1975).
- 21) D. Satoh and T. Hashimoto, Chem. Pharm. Bull., 24, 1950 (1976).
- 22) A. Tanaka. Ph. D. Thesis. University of Keio, Tokyo, Japan, (1984); H. Umezawa, S. Umezawa, T. Tsuchiya, and A. Tanaka, Japan Patent Appl. 101933 (1980); *Chem. Abstr.*, 97, 56185i.