SHORT COMMUNICATION

MYRICETIN-7-GLUCOSIDE FROM THE ANDRAECIUM OF THE FLOWERS OF CALOPHYLLUM INOPHYLLUM

S. SANKARA SUBRAMANIAN and A. G. R. NAIR

Department of Chemistry, Jawaharlal Institute of Postgraduate Medical Education & Research, Pondicherry-6. India

(Received 18 September 1970)

Abstract-The andraecium of the flowers of *Calophyllum inophyllum* has been found to contain **myricetin-7**glucoside, recorded for the first time, along with small quantities of free myricetin and quercetin.

INTRODUCTION

Calophyllum inophyllum L.¹ (Guttiferae) is a moderately sized medicinal tree, found on coastal regions of South India and grown for ornamental purposes. In a preliminary **communication**,² the isolation of a new glycoside of myricetin from the andraecium of its flowers was reported, and the characterization of the glycoside as myricetin-7-glucoside is now given.

RESULTS AND DISCUSSION

The major flavonoid pigment, m.p. 238–240° yielded, on acid hydrolysis, myricetin and glucose in equimolar ratio. The colour reactions* of the glucoside were similar to those of myricetin and different from those of myricetin-3'-glucoside,³ indicating the presence of a pyrogallol structure in the molecule. The deep yellow colour in the H&hammer-Hansel test indicated a free C-3 hydroxyl, and the positive Wilson boric acid test and the absence of intense UV fluorescence a free C-5-OH. The m.p. and R_f of the pigment (Table 1), were different from all the previously known glycosides of myricetin.⁴

	R_f^*				λ_{\max} (nm) in				
Pigment	HOAc 30%	HOAc 69%	Water satd. phenol	BAW	Forestal	EtOH	EtOH- [AlCl ₃	EtOH- AlCl₃ HCl	EtOH– NaOAc
Myricetin-7- glucoside	0.28	0.41	0.35	0.41	0.51	379 260	443	426	390,262
Quercetin-7- glucoside†	0.33	0.20	0.45	0.42	0.61	200	-		

I ADLE I. A. AND Amax (IIII) OF MILLICEIIN-7-GLOCOMDE	TABLE	1. R ,	AND λ_{max}	(nm)	OF MYRICETIN-7-GLUCOSIDE
---	-------	---------------	---------------------	------	--------------------------

* Whatman No. 1, ascending, temperature $28 \pm 2^{\circ}$.

- AN O N. Wealth of India, Raw Materials, Vol. II, p. 18, C.S.I.R., New Delhi (195 ²S. S. SUBRAMANIAN and A. G. R. NAIR, Bull. Nat. Inst. Sci. India No. 31, 39 (1965).

³ A. G. R. NAIR, S. NAGARAJAN and S. S. SUBRAMANIAN, Curr. Sci. 33,431 (1964).

⁴ J. B. HARBORNE, Comparative Biochemistry of Flavonoids, Academic Press, London (1967).

 $[\]dagger R_{f}$

The UV and IR spectra⁵ of the glucoside were almost the same as for myricetin (cf. the spectra of myricetin-7-methyl ether and myricetin as well as quercetin-7-glucoside and quercetin). The spectral shifts with NaOMe, NaOAc, AlCl₃ and AlCl₃/HCl were all in agreement with glycosylation at C-7.^{5,6}

Further chemical evidence for the structure of the compound was obtained by complete methylation and hydrolysis. The partial methyl ether (monohydroxypentamethoxyflavone) melted at 250-251" (no Fe³⁺ colour) was different from 3-hydroxy-5,7,3',4',5'-pentamethoxyflavone' (m.p. 228-229") and 5-hydroxy-3,7,3',4',5'-pentamethoxyflavone⁸ (m.p. 144"; alc. Fe³⁺—deep green). On alkali fission, it yielded 3,4,5-trimethoxybenzoic acid. This established the constitution of the partial methyl ether as 7-hydroxy-3,5,3',4',5'-pentamethoxyflavone which showed UV shift (40 nm) with NaOAc, confirming the presence of a free 7-hydroxyl. Thus, the original glucoside was identified, for the first time, as myricetin-7-glucoside.

EXPERIMENTAL*

The fresh andraecium separated from the petals was extracted with hot **MeOH** and the combined extracts concentrated *invacuo* with addition of some water towards the end. The aq. concentrate was shaken with petrol (40–60°) and peroxide free ether. The aq. layer kept in an ice-chest for three days deposited a yellow solid which on recrystallization (MeOH–ether) came out as yellow needles, m.p. 238–240° (earlier sintering at 216°), $C_{21}H_{20}O_{13}$, λ_{max} (EtOH) 379, 260 nm. The ether layer contained free myricetin and quercetin, identified by direct comparison with authentic samples.

sintering at 210), $C_{21}H_{20}O_{13}$, n_{max} (EtOH) 577, 200 min. The curve have contained the hyperbolic approximate thyperbolic approximate the hyperbolic approximate thyper

Acknowledgements-We thank Professor T. R. Govindachari, Director, CIBA Research Centre, Goregaon, Bombay, and Prof. S. Neelakantan, Madurai University, for spectral data, and the Principal, J.I.P.M.E.R., for kind encouragement.

* The compounds recorded above analysed satisfactorily for elements and methoxyl.

- ⁵T. J. MABRY, in *Perspectives in Phytochemistry* (edited by J. B. HARBORNE and T. SWAIN), Academic Press, London (1969).
- ⁶L. JLJRD, in *Chemistry of Flavonoid Compounds* (edited by T. A. GEISSMAN), p. 115, Academic Press, New York (1962).
- ⁷G. HARRIS, Dictionary of Organic Compounds (4th edition), p. 2362, Eyre & Spottiswoode, London (1965).
- ⁸ S. MONGKOLSUK, F. M. DEAN and L. E. HOUGHTON, J. Chem. Soc. 125 (1966).