SYNTHESIS OF THROMBOXANE A₂ ANALOG, DL-(9,11)-METHANO-(11,12)-AMINO THROMBOXANE A₂

Shunji Kosuge, Masaki Hayashi and Nobuyuki Hamanaka* Research Institute, Ono Pharmaceutical Co., Ltd. Shimamoto-cho, Mishima-gun, Osaka 618, Japan

<u>Abstract</u>: A synthesis of nitrogen containing thromboxane A_2 analog, <u>dl</u>-(9,11)methano-(ll,12)-amino thromboxane A_2 (1) is described.

Thromboxane A_2 (TXA₂) is an extremely unstable substance possessing very important biological activities (platelet aggregation and vasoconstriction).¹ In conection with our studies directed toward the synthesis of stable and biologically active TXA₂ analogs,^{2a,b} we wish to report the synthesis of new analogs <u>la,b</u> in which two oxygen atoms in the bicyclic system of TXA₂ were replaced by methylene and amino groups. These compounds are the first analogs which have a nitrogen atom in the bicyclic system.

The compound 2^{2a} was chosen as a starting material. This compound was converted to the aldehyde 3 with $0sO_4-NaIO_4$, which, without purification, was treated with $Ph_3P=CHCO_2Et$ to afford the α,β -unsaturated ester 4 [80% from $2, \delta$ 6.86 (1H, dd, J=16, 5.5 Hz) and 5.66 (1H, d, J=16 Hz)]. Reduction of the ester group in 4 with DIBAH at -70°C in toluene (73%) followed by heating of the resulting allylic alcohol 5 with triethylorthoacetate (7eq) in the presence of a catalytic amount of pivalic acid at 160°C for 1 hr gave the Claisen rearrangement product 6 [92%, δ 5.53 (1H,m), 4.93 (2H,m) and 3.52 (3H, m)]. After epoxidation of the double bond in 6 with m-CPBA, the epoxide was ring-opened with PhSH and Et_3N in MeOH and then lactonization with acid provided the γ -lactone 2 [63% from $6, \vee$ 1780, δ 7.20 (5H, m), 4.50 (1H, m) and 3.12 (2H, m), m/e 362]. The cis-cyclobutanol monety in 2 was converted to trans-configuration into 8 by the following reactions: 1) hydrolysis of THP ether; 2) inversion of the corresponding alcohol with (=N-CO_2Et)_2-Ph_3P-HCO_2H;³ 3) hydrolysis of the

resulting formate; 4) protection as a THP ether. The lactone $\underline{8}$ was reduced to the corresponding hemiacetal with DIBAH, of which Wittig reaction with the ylide prepared from 5-triphenylphosphoniopentanoic acid followed by treatment with diazomethane provided the compound $\underline{9}$ [63%, \vee 3500, 1740, δ 7.18 (5H, m), 5.28 (2H, m), 4.48 (1H, m) and 3.61 (3H, s), m/e 462].

Introduction of an amino group into the system and construction of 2-azabicyclo[3,1,1]heptane skeleton were achieved as follows. The compound 9 was transformed into the compound 10 in four steps: 1) MsCl-Et₃N; 2) NaN₃, HMPA, 40°C for 50 hr; 3) hydrolysis of THP ether; 4) MsCl-Et₃N [27%, \lor 2100, 1730, δ 7.23 (5H, m), 5.26 (2H, m), 4.85 (1H, m), 3.56 (3H, s) and 2.90 (3H, s), m/e 481]. The azide group in 10 was smoothly converted to the corresponding amine 11 (90%) using CrCl₂.⁴ After some attempts to form the desired bicyclic system, treatment of 11 with NaH in DMF (40°C for 34 hr) gave the bicyclic compound which was treated with (CF₃CO)₂O⁵ to provide the desired amide 12 after purification by SiO₂ chromatography [30%, \lor 1730, 1680, δ 7.35 (5H, m), 5.35 (2H, m), 4.52 (1H, m), 4.01 (1H, m) and 3.65 (3H, s), m/e 455]. The sulfur group in 12 was oxidized with NaIO₄ to the sulfoxide 13 (88%: \lor 1730, 1680, 1040, m/e 471), which was transformed into the compound 14 by Pummerer reaction with (CF₃CO)₂O⁶ followed by treatment with aqueous NaHCO₃ [14: δ 9.26 (1H, d), 5.35 (2H, m) and 3.60 (3H, s), m/e 361].

We deduced the stereochemical relationship expressed by 12 with the two vicinal carbon appendages <u>trans</u> to one another from inspections of molecular model. In addition, the compound 14 produced from the above reactions obviously possesses the <u>trans</u> configuration since treatment of 14 with potassium carbonate under conditions sufficient to cause epimerization of aldehydes dose not effect epimerization. These observations are the same as a case of (11,12)-oxa TXA₂ analogs.⁷

The compound 14, which was moderately unstable, was immediately condenced with tri-butyl-2-oxoheptylphosphorane to provide the enone [15: 48% from 12, v 1730, 1680, 1625, δ 6.76 (1H, dd, J=6, 17 Hz), 6.18 (1H, d, J=17 Hz), 4.56 (1H, m, C₁₂-H) and 4.26 (1H, m, C₁₁-H), m/e 457]. Reduction of the ketone group in 15 with NaBH₄ gave two allylic alcohols as a diastereomeric mixture, which were separated by reverse-phase chromatography.⁸ The less polar compound was tentatively assigned to α -isomer 16 and more polar to 17 by comparison between the biological activities coupled with mobility on reverse-phase TLC plate allowing for the observation in the fields of prostaglandins [16; 38% and 17 41%, both compounds showed very similar spectra: v 3500, 1730, 1680, 980, δ 5.61 (2H, m), 5.43 (2H, m), 4.49 (2H, m), 4.09 (1H, m) and 3.66 (3H, s), m/e 459]. Finally, the compounds 16 and 17 were hydrolyzed with 0.1N aqueous LiOH in MeOH (40°C for 2 hr) to produce cleanly the desired compounds 1a and 1b, respectively [1a: v 3600-2400, 1705, 980, δ 6.22 (1H, m), 5.90 (2H, m), 5.40 (2H, m), 4.20 (1H, m) and 3.85 (2H, m), m/e 349].

15: $R^{1} = R^{2} = 0$ 16: $R^{1} = H, R^{2} = OH$ 17: $R^{1} = OH, R^{2} = H$ The compound <u>la</u> showed the contractile activity on an isolated rat aorta $[CD_{50} 3 \times 10^{-8} \text{ g/ml}]$. However, the compound <u>lb</u> did not show any contractile activities. In addition, both compounds showed no aggregation effect on human platelets.

REFERENCES AND NOTES

- B. Samuelsson, M. Goldyne, F. Gromström, S. Hammarström and C. Malmsten, Am. Rev. Biochem., 47, 997 (1978) and references cited.
- 2. a) S. Kosuge, N. Hamanaka and M. Hayashi, Tetrahedron Lett., 1345 (1981);
 - b) S. Ohuchida, N. Hamanaka and M. Hayashi, <u>ibid</u>, 1349 (1981); <u>idem</u>, J. Am. Chem. Soc., <u>103</u>, 4597 (1981) and references cited.
- A. K. Bose, B. Lal, W. A. Hoffman and M. S. Manhas, Tetrahedron Lett., 1619 (1973).
- 4. D. N. Kirk and M. A. Wilson, J. Chem. Soc., Chem. Commun., 64 (1970).
- 5. When acetyl group or other protecting group was used, the deprotection of the amino group in the compounds 16 and 17 were unsuccessful.
- 6. H. Sugihara, R. Tanikaga and A. Kaji, Synthesis, 881 (1978).
- 7. E. J. Corey, J. W. Ponder and P. Ulrich, Tetrahedron Lett., 137 (1980).
- TLC: R_f values of these diastereomers are 0.43 and 0.50, respectively (silica gel 60F₂₅₄ silanised TLC plate, Merk, developed three times with 1% EtOH in benzene).

(Received in Japan 10 June 1982)