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Nucleophilic catalysis represents an important subset of
organocatalytic transformations.[1,5] As part of a program
devoted to the design of phosphane-catalyzed C�C bond-
forming reactions,[2] we recently reported the first intra-
molecular phosphane-catalyzed [3+2] cycloaddition of 2-
butynoates with electron-deficient alkenes.[2a] A challenge
inherent to the intramolecular cycloaddition resides in
suppression of competitive internal redox isomerization,
that is, phosphane-catalyzed conversion of the 2-alkynoates
to the corresponding 2,4-dienoates.[3] Indeed, whereas diqui-
nane formation proceeds smoothly, presumably owing to the
enhanced rate of five-membered-ring formation, competitive
isomerization circumvents hydrindane formation. Notably,
unlike the parent intermolecular cycloaddition discovered in
1995,[4,5] which generally provides cycloadducts as mixtures of
regio- and diastereomers, the intramolecular process affords
cycloadducts in isomerically pure form.[2a] In this account, the
first application of this intramolecular organocatalytic cyclo-
addition methodology in natural product synthesis is
reported, as demonstrated by the synthesis of the linear
triquinane hirsutene. These studies highlight the utility of this
cycloaddition methodology vis-*-vis diastereoselective con-
struction of quaternary centers and establish the intramolec-
ular cycloaddition as a stereospecific process.

Since the first structural elucidation of a polyquinane
natural product in 1966 (hirsutic acid-C, Figure 1),[6] over 250
polyquinane natural products have been isolated.[7] Over 80 of
these natural products belong to the structural subset known
as linear triquinanes, which are isolated from plants, microbes,
and marine organisms.[7b] The discovery of structurally novel
linear triquinanes continues unabated. For example, chlori-
nated linear triquinanes such as chloriolin C have been
isolated from fungal cultures taken from a Jaspis marine
sponge.[8] Efforts toward the synthesis of linear triquinane

natural products are fueled, in part, by their biological
activity. Hirustic acid-C and coriolin exhibit antibiotic and
antitumor activity, respectively.[9] Owing to their novel
structure, the linear triquinanes have also captured the
interest of synthetic chemists as a testing ground for new
cyclopentannulation strategies. In this latter capacity, hisu-
tene, a metabolite of the basidiomycete Coriolus consors and
presumed biogenetic precursor to coriolin and hirsutic acid-
C,[10] has been the focus of considerable attention.[7] Here we
present a concise and stereocontrolled approach to (� )-
hirsutene based on phosphane-catalyzed intramolecular
[3+2] cycloaddition methodology developed in our lab.

Retrosynthetically, hirsutene is envisioned to derive from
cycloadduct 6 by means of aldol cyclization–methylenation
(Scheme 1). The diquinane 6, which contains three of the four
stereogenic centers in hirsutene, will be obtained directly
through phosphane-catalyzed [3+2] dipolar cycloaddition of
the 1,7-enyne 5. The cycloaddition of 5 serves as a means of
exploring the utility of the intramolecular cycloaddition
methodology vis-*-vis stereoselective formation of quater-
nary carbon centers. Moreover, by examining the cyclo-
addition of both (E)- and (Z)-5, information regarding the
stereospecificity of the intramolecular cycloaddition may be
obtained. Finally, cycloaddition substrate 5 will be obtained
from dimethylhexenol 1 through sequential introduction of
enone and ynoate moieties.

The synthesis of cycloaddition substrate 5 begins with
tosylation of 3,3-dimethyl-hex-5-en-1-ol (1, Scheme 2).[11]

Displacement of the tosylate was attempted with an assort-
ment of acetylides under a range of conditions, but it could
only be achieved with lithium acetylide ethylenediamine
complex in DMSO. Under these conditions the resulting 1,7-
enyne 2 is produced in 68% yield.[12] Treatment of 1,7-enyne 2
with methyllithium followed by methyl chloroformate pro-
vides the corresponding ynoate 3 in 81% yield. Selective
ozonolytic cleavage of the terminal alkene residue in the
presence of the ynoate occurs smoothly to provide aldehyde 4
in 85% yield. Finally, olefination of 4 using 3-diethylphos-
phono-2-butanone[13] occurs in 60% yield to afford cyclo-
addition addition substrate 5 as a 5.5:1 ratio of E/Z isomers.

The acquisition of mono(enone)–mono(ynoate) 5 sets the
stage for phosphane-catalyzed cycloaddition. Gratifyingly,
exposure of (E)-5 to our previously defined conditions[2a] for
intramolecular phosphane-catalyzed [3+2] dipolar cycloaddi-
tion results in the formation of cycloadduct 6 in 88% yield.

Figure 1. Representative linear triquinanes.
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Moreover, 6 is obtained as a single stereoisomer with
placement of the methyl residue on the concave face of the
diquinane ring system, that is, formation of the quaternary
center occurs readily and with a stereochemistry consistent
with the structural features of hirsutene. To probe the
stereospecificity of the cycloaddition, (Z)-5 was exposed to
identical conditions. Formation of the epimeric diquinane epi-
6 is observed, without any detectable formation of the
cycloadduct derived from (Z)-5. These results firmly establish
the intramolecular phosphane-catalyzed [3+2] dipolar cyclo-
addition as a stereospecific process. This result is significant in
view of the fact that evidence for both stepwise and concerted
mechanisms exists for related intermolecular cycloaddi-
tions.[4e,5] A model accounting for the stereospecific cyclo-
addition of (E)- and (Z)-5 is given below (Scheme 3).

Elaboration of cycloadduct 6 to hirsutene is achieved in
six manipulations. Hydrogenation of 6 followed by LiAlH4

reduction occurs in yields of 93% and 92%, respectively, to

provide diol 7 as a mixture of diastereomers. Swern mod-
ification of the Moffatt oxidation provides an intermediate
keto-aldehyde in 78% yield, which upon exposure to base
affords the aldol cyclodehydration product 8 in 95% yield as a
single stereoisomer. Enone 8 is identical in all respects to the
previously reported material, which has been converted to
hirsutene in two manipulations.[14] As such, the synthesis of 8
represents a formal total synthesis of (� )-hirsutene. Whereas
the previously reported material is prepared in 18 steps from
2,2’-dimethylpentenal, the present route allows access to
enone 8 in 12 steps from the very same precursor (Scheme 4).

In summation, intramolecular phosphane-catalyzed [3+2]
dipolar cycloaddition enables a concise approach to the linear
triquinane hirsutene, whereby three contiguous stereogenic
centers, including a quaternary center, are created in a single
manipulation with control of relative stereochemistry. In
addition to demonstrating the applicability of this method-
ology vis-*-vis triquinane synthesis, these studies also reveal
that the intramolecular cycloaddition is stereospecific. Future
studies will be devoted to the design of related phosphane-
catalyzed transformations including enantioselective variants
of the methodology reported herein.
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Scheme 3. Phosphane-catalyzed cycloaddition of 5 is stereospecific.
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