Copper-Free Sonogashira Coupling of Acid Chlorides with Terminal Alkynes in the Presence of a Reusable Palladium Catalyst: An Improved Synthesis of 3-Iodochromenones (= 3-Iodo-4H-1-benzopyran-4-ones)

by Pravin R. Likhar*, M. S. Subhas, Moumita Roy, Sarabindu Roy, and M. Lakshmi Kantam

Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Hyderabad, 500007, India (fax: +91-40-27160921; e-mail: plikhar@iict.res.in)

Pd/C is used as an efficient catalyst for the copper-free *Sonogashira* coupling of acid chlorides and terminal alkynes to afford ynones in high yields (*Tables 1* and 3). Cyclization of (2-methoxyaryl)-substituted ynones induced by I₂/ammonium cerium(IV) nitrate (CAN) at room temperature gave 3-iodochromenones (= 3-iodo-4*H*-1-benzopyran-4-ones) in excellent yield (*Table 4*).

Introduction. – Ynones are important synthetic targets for the preparation of heterocyclic derivatives such as pyrroles [1], furans [2], furanones [3], pyrazoles [4], isoxazoles [5], pyrimidines [6], quinolines [7], and iodochromones [8], *etc.* Ynones are generally synthesized *via* coupling of carboxylic acid chlorides and alkynes by using palladium and copper catalysts under homogeneous conditions [9]. Despite the synthetic elegance, all of these homogeneous catalytic protocols suffer from the loss of the precious palladium catalyst at the end of the reaction. Further, the use of a copper co-catalyst facilitates the homocoupling of alkynes, which in turn makes the separation of the products more tedious. So it is highly desirable to develop a copper-free reusable catalytic system for the coupling of acid chlorides with alkynes.

Recently Pd/C has received considerable attention in organic synthesis for its availability, low cost, heterogeneous nature, and ease of handling [10]. It was effectively used in numerous C-C bond forming reactions. Buoyed with the literature reports [10], we wish to examine the catalytic activity of Pd/C in the coupling of alkynes with acid chlorides.

Results and Discussion. – Initially we studied the coupling of benzoyl chloride (1a) and ethynylbenzene (2a) in the presence of 1 mol-% of Pd/C catalyst under different conditions (*Table 1*). It was evident from *Table 1* that the maximum formation of product **3aa** was observed when dry toluene was used as solvent in the presence of triethylamine as base. By lowering the catalyst amount from 1 mol-% to 0.1 mol-%, good to moderate yields were obtained after a longer reaction time (*Table 1, Entries 10* and *11*). Even at room temperature, Pd/C afforded 48% of **3aa** within 8 h (*Table 1, Entry 9*). To widen the scope of this catalytic protocol, several other alkynes and acid chlorides were allowed to react under the optimized conditions. The results are summarized in *Table 2*.

From *Table* 2, it can be observed that aromatic acid chlorides with electronwithdrawing groups reacted more sluggishly than the aromatic acid chlorides with

^{© 2008} Verlag Helvetica Chimica Acta AG, Zürich

			10% Pd/C (1 mol-%) solvent, base, reflux, N ₂			
	1a	2a		3aa		
Entry	Solvent	Base	Time [h]	Temperature [°]	Yield ^b) [%]	
1	dry toluene	Et ₃ N	2	110	96	
2	dry toluene	NaOAc	5	110	20	
3	dry toluene	ⁱ Pr ₂ EtN	2	110	80	
4	dry toluene	Pyridine	3	110	30	
5	dry toluene	DABCO ^c)	2	110	68	
6	dry THF	Et ₃ N	4	80	70	
7	dry DMF	Et ₃ N	5	100	53	
8	MeCN	Et ₃ N	5	90	42	
9	dry toluene	Et ₃ N	8	r.t.	48	
10	dry toluene	Et ₃ N	5	110	78 ^d)	
11	dry toluene	Et ₃ N	8	110	57°)	

Table 1. Optimization of Reaction Conditions for the Coupling of Ethynylbenzene and Benzoyl Chloride^a)

0

^a) Reaction conditions: Alkyne (1 mmol), acid chloride (1.2 mmol), Pd/C (1 mol-%) (10 wt-% Pd/ charcoal), base (2 mmol), N₂ atmosphere. ^b) GC Yield, with tridecane as internal standard. ^c) DABCO = 1,4-Diazabicyclo[2.2.2]octane. ^d) Pd/C (0.5 mol-%). ^e) Pd/C (0.1 mol-%).

electron-donating groups (*Table 2*, *Entry 4*). Also an α,β -unsaturated acid chloride or cyclic aliphatic acid chloride reacted smoothly to afford the respective ynone in high yield (*Table 2*, *Entries 3* and *10*). In case of a heterocyclic acid chloride, the coupling product was obtained in good yield (*Table 2*, *Entry 9*). The reaction of aliphatic alkynes provided relatively lower yields than that of aromatic alkynes (*Table 2*, *Entries 12* and *15*).

For any heterogeneous catalyst, it is important to know its ease of separation and possible reusability. In this coupling reaction, the Pd/C catalyst was separated by a simple filtration, washed with a copious amount of toluene and water, followed by acetone, and then air-dried. The recovered catalyst was charged in the next cycle. The yield of product decreased from 96 to 67% after the 6th cycle (*Table 3*). When the Pd-content of the catalyst after the 6th cycle was analyzed by atomic absorption spectroscopy (AAS), an almost 15% decrease in Pd-content was noticed. This nonreversible leaching phenomenon was already observed in case of Pd/C [11].

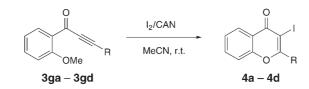
The 2,3-diarylchromenones (=2,3-diaryl-4*H*-1-benzopyran-4-ones) are known to be antihypertensive and anti-inflammatory agents as well as COX-2 inhibitors [12]. The 3-iodochromenones can be used as a precursor for the synthesis of 2,3-diarylchromenones. Iodochromenones are potential intermediates in the synthesis of bioactive molecules [13]. Recently, *Larock* and co-workers have shown that iodine monochloride (ICl) induced cyclization of heteroatom-substituted alkynones into various 3-iodochromenones and analogues [8]. ICl is highly moisture- and light-sensitive. To develop an easy and alternative methodology, it is necessary to have stable and safe reagent systems. When molecular iodine (I_2) was used in place of ICl for the cyclization of a (2-

Entry	Acid chloride RC(=O)Cl	Alkyne $R' - C \equiv C - H$	Product RC(=O)-C \equiv C-R' ^b)	Time [h]	Yield ^c) [%]
1	1a; R = Ph	2a; R' = Ph	3aa	2	92
2	1b ; $R = 4 - Me - C_6 H_4$	2a	3ba	2	90
3	1c; R = Ph - CH = CH	2a	3ca	2.5	91
4	$1d; R = 4-NO_2 - C_6H_4$	2a	3da	4	65
5	$1e; R = 4-Cl - C_6H_4$	2a	3ea	3	95
6	$1f; R = 4-MeO - C_6H_4$	2a	3fa	2	89
7	$1g; R = 2 - MeO - C_6H_4$	2a	3ga	3	90
8	1h ; $R = 4 - {}^{t}Bu - C_{6}H_{4}$	2a	3ha	2	82
9	1i ; $\mathbf{R} = $ furan-2-yl	2a	3ia	2.5	78
10	1j; R = cyclohexyl	2a	3ja	2.5	83
11	1a	2b ; $R' = 4 - Me - C_6 H_4$	3ab	2	90
12	1a	2c; R' = hexyl	3ac	3.5	72
13	1a	$2d; R' = 4-MeO - C_6H_4$	3ad	3	90
14	1g	2b	3gb	2.5	85
15	1g	2c	3gc	3	60
16	1g	2d	3gd	2	89

Table 2. Coupling of Acid Chlorides with Alkynes in the Presence of Pd/C Catalyst^a)

^a) Reaction conditions: Terminal alkyne (1 mmol), acid chloride (1.2 mmol), Et₃N (2 mmol), dry toluene (2 ml), Pd/C (1 mol-%) (10 wt-% Pd/charcoal), 110°, N₂. ^b) All the products were characterized by ¹H-NMR and mass spectrometry. ^c) Yield of isolated pure product.

 Table 3. Reusability of the Pd/Catalyst in the Coupling of Ethynylbenzene (2a) and Benzoyl Chloride (1a)^a)


	1st cycle	2nd cycle	3rd cycle	4th cycle	5th cycle	6th cycle
Time [h]	2	2	2.5	3	4	6
Yield ^b) [%]	96	90	83	78	72	67

^a) Reaction conditions: Ethynylbenzene (**2a**; 3 mmol), benzoyl chloride (**1a**; 3.6 mmol), Et₃N (6 mmol), dry toluene (6 ml), 110°, N₂. ^b) GC Yield, with tridecane internal standard.

methoxyaryl)-substituted alkynone, no iodochromenone product formation was observed [8]. It is believed that for the facile formation of 3-iodochromenone, it is essential to generate the iodine cation on the C \equiv C bond of the ynone (iodonium intermediate) *via* activation of I₂. A literature search on the activation of I₂ revealed ammonium cerium(IV) nitrate (CAN) as an efficient and convenient activator for I₂ in the iodination of ketones, aromatic compounds, uracil derivatives, enones, and flavones [14].

When **3ga** was treated with I_2 /CAN, we obtained 97% of **4a** (*Table 4*, *Entry 1*). Consequently, several other substituted alkynones were treated with I_2 /CAN, and the results are summarized in *Table 4*. It was observed that aliphatic substituted ynones needed a longer reaction time than aromatic substituted ynones (*Table 4*, *Entry 3*).

In conclusion, we have developed a heterogeneous protocol for the coupling of acid chlorides and alkynes. The catalyst can be easily separated and reused for several cycles Table 4. Synthesis of 3-Iodochromenones 4 with the I₂/CAN System^a)

Entry	R	Alkynone	Time [min]	Product ^b)	Yield ^c) [%]
1	Ph	3ga	15	4 a	97
2	$4 - Me - C_6 H_4$	3gb	15	4b	95
3	hexyl	3gc	30	4c	91
4	$4-MeO-C_6H_4$	3gd	15	4d	98

^a) Reaction conditions: Ynone (0.3 mmol), I₂ (0.36 mmol), CAN (0.33 mmol), MeCN (3 ml), at r.t. ^b) All the products were characterized by ¹H-NMR and mass spectrometry. ^c) Yield after isolation.

of reactions. We have also developed a mild and highly efficient I_2 /CAN system for the iodocyclization of (2-methoxyaryl)-substituted ynones.

We wish to thank CSIR and UGC, New Delhi, for financial assistance.

Experimental Part

1. General. The 10% Pd/C was purchased from *SRL*, India. All other reactants were commercially available and used without purification. Toluene was distilled over sodium benzophenone. GC: *Shimadzu GC 2010*, *ZB-5* capillary column. IR Spectra: *Perkin-Elmer FT* spectrophotometer; $\bar{\nu}$ in cm⁻¹. NMR Spectra: *Bruker Avance-300* and *Varian Gemini-200* spectrometers; chemical shifts δ in ppm rel. to SiMe₄ as internal standard, coupling constants *J* in Hz.

2. *Ynones: General Procedure.* In an oven-dried vessel, a mixture of alkyne (1 mmol), Et_3N (2 mmol), 10% Pd/C (1 mol-%, 10 mg), and dry toluene (1 ml) was stirred for 10 min under N_2 . Next, the acid chloride (1.2 mmol) in dry toluene (1 ml) was added dropwise to the mixture within 2 min. The mixture was stirred at 110° under N_2 , and the progress of the reaction was monitored by GC. After completion, the catalyst was separated by filtration, and to the filtrate, H_2O (20 ml) was added. The mixture was extracted with AcOEt (3 × 20 ml), the combined org. phase dried (MgSO₄), and the solvent evaporated. The crude product was purified by column chromatography (CC) (silica gel, hexane/AcOEt 9:1): pure ynone. The ynones were characterized by ¹H-NMR and MS and compared with literature data. The spectral data of some representative products are given below.

1,3-Diphenylprop-2-yn-1-one (**3aa**) [9c]: ¹H-NMR (200 MHz, CDCl₃): 7.35 – 7.72 (*m*, 8 H); 8.15 – 8.24 (*m*, 2 H). EI-MS: 206 (82, *M*⁺), 178 (100), 129 (76).

1-(4-Nitrophenyl)-3-phenylprop-2-yn-1-one (**3da**) [9c]: ¹H-NMR (300 MHz, CDCl₃): 7.42–7.56 (*m*, 3 H); 7.68–7.72 (*m*, 2 H); 8.37 (*s*, 4 H). EI-MS: 251 (20, *M*⁺), 223 (8), 129 (100).

1-(Furan-2-yl)-3-phenylprop-2-yn-1-one (**3ia**) [9c]: ¹H-NMR (300 MHz, CDCl₃): 6.55–6.60 (*m*, 1 H); 7.34–7.49 (*m*, 4 H); 7.60–7.69 (*m*, 3 H). EI-MS: 196 (65, *M*⁺), 168 (68), 139 (88), 129 (100), 101 (10), 74 (50).

1-Cyclohexyl-3-phenylprop-2-yn-1-one (**3ja**) [9c]: ¹H-NMR (300 MHz, CDCl₃): 1.14–2.13 (*m*, 10 H); 2.38–2.54 (*m*, 1 H); 7.31–7.46 (*m*, 3 H); 7.52–7.62 (*m*, 2 H). EI-MS: 212(2, *M*⁺), 130 (8), 129 (100), 102 (20), 75 (18), 55 (70).

3-(4-Methoxyphenyl)-1-phenylprop-2-yn-1-one (**3ad**) [9b]: ¹H-NMR (300 MHz, CDCl₃): 3.85 (*s*, 3 H); 6.90 (*d*, *J* = 9.0, 2 H); 7.49 (*t*, *J* = 7.6, 2 H); 7.55 – 7.65 (*m*, 3 H); 8.18 (*d*, *J* = 8.3, 2 H). EI-MS: 236 (57, *M*⁺), 208 (32), 165 (20), 159 (100), 144 (12).

1-(2-Methoxyphenyl)non-2-yn-1-one (**3gc**): IR (neat): 2928, 2856, 2210, 1647, 1627, 1596, 1485, 1462, 1298, 1240, 1022, 755. ¹H-NMR (200 MHz, CDCl₃): 0.91 (t, J = 6.8, 3 H); 1.29–1.37 (m, 4 H); 1.41–1.52 (m, 2 H); 1.59–1.69 (m, 2 H); 2.44 (t, J = 6.8, 2 H); 3.91 (s, 3 H); 6.92–7.01 (m, 2 H); 7.42–7.49 (m, 1 H); 7.95 (dd, J = 7.5, 1.5, 1 H). ¹³C-NMR (CDCl₃, 75 MHz): 13.97; 19.22; 22.50; 27.90; 28.58; 31.22; 55.78; 81.80; 95.29; 112.15; 120.09; 126.90; 132.78; 134.59; 159.65; 177.09. EI-MS: 244 (25, M^+), 187 (80), 174 (100), 173 (67), 135 (84), 121 (71), 115 (34), 91 (22), 77 (47). Anal. calc. for C₁₆H₂₀O₂ (244.33): C 78.65, H 8.25; found: C 78.79, H 8.15.

3. 3-Iodochromenones: General Procedure. In an oven-dried reaction tube, a mixture of ynone (0.3 mmol), I_2 (0.36 mmol), CAN (0.33 mmol), and MeCN (3 ml) was stirred at r.t., and the progress of reaction was monitored by TLC. To the mixture, sat. aq. $Na_2S_2O_3$ soln. (3 ml) and then sat. NaCl soln. (20 ml) was added. The mixture was extracted with AcOEt (3 × 10 ml), the combined org. layer dried (MgSO₄), and the solvent evaporated. The residue was purified by CC (silica gel, hexane/AcOEt 9:1): pure iodochromenone. All the reported iodochromenones were identified by comparison with their published spectral data.

*3-Iodo-2-phenyl-4*H-*1-benzopyran-4-one* (**4a**) [8]: ¹H-NMR (200 MHz, CDCl₃): 7.39–7.58 (*m*, 5 H); 7.64–7.82 (*m*, 3 H); 8.23–8.33 (*m*, 1 H). EI-MS: 348 (100, *M*⁺), 221 (65), 165 (67), 121 (35).

*3-Iodo-2-(4-methylphenyl)-4*H-*1-benzopyran-4-one* (**4b**): ¹H-NMR (200 MHz, CDCl₃): 2.48 (*s*, 3 H); 7.23 – 7.35 (*m*, 2 H); 7.37 – 7.50 (*m*, 2 H); 7.62 – 7.75 (*m*, 3 H); 8.27 (*d*, *J* = 7.8, 1 H). EI-MS: 362 (100, *M*⁺), 235 (36).

2-*Hexyl-3-iodo*-4H-*1-benzopyran*-4-*one* (**4c**): IR (neat): 2954, 2927, 2857, 1650, 1611, 1559, 1353, 1112, 758. ¹H-NMR (300 MHz, CDCl₃): 0.92 (*t*, *J* = 6.8, 3 H); 1.29 – 1.53 (*m*, 6 H); 1.74 – 1.85 (*m*, 2 H); 3.03 (*t*, *J* = 7.6, 2 H); 7.36 – 7.43 (*m*, 2 H); 7.61 – 7.68 (*m*, 1 H); 8.20 (*dd*, *J* = 8.3, 2.3, 1 H). ¹³C-NMR (CDCl₃, 75 MHz): 14.05; 22.43; 26.97; 28.68; 31.48; 38.63; 88.35; 117.39; 120.06; 125.39; 126.43; 133.77; 155.44; 169.11; 173.85. EI-MS: 356 (15, M^+), 229 (18), 159 (26), 131 (88), 121 (100), 95 (32), 69 (20). Anal. calc. for C₁₅H₁₇IO₂ (356.20): C 50.58, H 4.81; found: C 50.60, H 4.74.

*3-Iodo-2-(4-methoxyphenyl)-4*H-*1-benzopyran-4-one* (**4d**): ¹H-NMR (200 MHz, CDCl₃): 3.90 (*s*, 3 H); 6.95 – 7.04 (*m*, 2 H); 7.37 – 7.50 (*m*, 2 H); 7.63 – 7.82 (*m*, 3 H); 8.22 – 8.30 (*m*, 1 H). EI-MS: 378 (100, *M*⁺), 251 (24).

REFERENCES

- K. Utimoto, H. Miwa, H. Nozaki, *Tetrahedron Lett.* 1981, 22, 4277; A. V. Kelin, A. W. Sromek, V. Gevorgyan, J. Am. Chem. Soc. 2001, 123, 2074.
- [2] A. S. Karpov, E. Merkul, T. Oeser, T. J. J. Muller, *Chem. Commun.* 2005, 2581; A. S. Karpov, E. Merkul, T. Oeser, T. J. J. Muller, *Eur. J. Org. Chem.* 2006, 13, 2991.
- [3] H. Arzoumanian, M. Jean, D. Nuel, A. Cabrera, J. L. G. Gutierrez, N. Rosas, *Organometallics* 1995, 14, 5438; B. G. Van den Hoven, B. El Ali, H. Alper, J. Org. Chem. 2000, 65, 4131; V. Lellek, H.-J. Hansen, *Helv. Chim. Acta* 2001, 84, 3548.
- [4] D. B. Grotjahn, S. Van, D. Combs, D. A. Lev, C. Schneider, M. Rideout, C. Meyer, G. Hernandez, L. Mejorado, J. Org. Chem. 2002, 67, 9200; G. Cabarrocas, M. Ventura, M. Maestro, J. Mahia, J. M. Villalgordo, *Tetrahedron: Asymmetry* 2000, 11, 2483; X. Wang, J. Tan, L. Zhang, Org. Lett. 2000, 2, 3107.
- [5] J. P. Waldo, R. C. Larock, Org. Lett. 2005, 7, 5203.
- [6] A. S. Karpov, T. J. J. Muller, Org. Lett. 2003, 5, 3451; M. C. Bagley, D. D. Hughes, P. H. Taylor, Synlett 2003, 259.
- M. C. Bagley, D. D. Hughes, R. Lloyd, V. E. C. Powers, *Tetrahedron Lett.* 2001, 42, 6585; A. Arcadi,
 F. Marinelli, E. Rossi, *Tetrahedron* 1999, 55, 13233.
- [8] C. Zhou, A. V. Dubrovsky, R. C. Larock, J. Org. Chem. 2006, 71, 1626.
- [9] a) R. Chinchilla, C. Najera, *Chem. Rev.* 2007, 107, 874, and refs. cited therein; b) L. Chen, C. J. Li, Org. Lett. 2003, 5, 3451; c) D. A. Alonso, C. Najera, M. C. Pacheco, J. Org. Chem. 2004, 69, 1615.
- [10] M. Seki, Synthesis 2006, 2975; L. Yin, J. Liebscher, Chem. Rev. 2007, 107, 133.
- [11] A. Eisenstadt, European Patent EP0461322, 1990.

Helvetica Chimica Acta - Vol. 91 (2008)

- [12] Y. H. Joo, J. K. Kim, S. H. Kang, M. S. Noh, J. Y. Ha, J. K. Choi, K. M. Lim, C. H. Lee, S. Chung, *Bioorg. Med. Chem. Lett.* **2003**, *13*, 413; E. S. C. Wu, T. E. Cole, T. A. Davidson, J. C. Blosser, A. R. Borrelli, C. R. Kinsolving, T. E. Milgate, R. B. Parker, *J. Med. Chem.* **1987**, *30*, 788; E. S. C. Wu, T. E. Cole, T. A. Davidson, M. A. Dailey, K. G. Doring, M. Fedorchuk, J. T. Loch III, T. L. Thomas, J. C. Blosser, A. R. Borrelli, C. R. Kinsolving, R. B. Parker, *J. Med. Chem.* **1989**, *32*, 183; E. S. C. Wu, J. T. Loch III, B. H. Toder, A. R. Borrelli, D. Gawlak, L. A. Radov, N. P. Gensmante, *J. Med. Chem.* **1992**, *35*, 3519.
- [13] N. Ahmed, C. Dubuc, J. Rousseau, F. Bénard, J. Lier, Bioorg. Med. Chem. Lett. 2007, 17, 3212.
- [14] V. Nair, A. Deepthi, Chem. Rev. 2007, 107, 1862; F. J. Zhang, Y. L. Li, Synthesis 1993, 565.

Received August 30, 2007