SYNTHETIC ANTICONVULSANTS, ANTIHYPOXICS, AND INDUCERS OF THE LIVER MONOOXYGENASE SYSTEM BASED ON AMIDES AND UREAS.

XVII.* SYNTHESIS OF N-BENZHYDRYL-N'-(HETEROYL)UREAS AND STUDIES OF THEIR ANTICONVULSIVE ACTIVITY

L. G. Tignibidina, A. A. Bakibaev, V. K. Gorshkova,

UDC547.495.2:615.213

A. S. Saratikov, and L. G. Fomintseva

Previous studies [2, 3] have shown that benzhydrylureas have high anticonvulsive activity, and another report [4] showed that the introduction of aliphatic or aryl carboxyl radicals at the free nitrogen atom of monosubstituted ureas leads to a reduction in the biological activity of the original compound.

With the aim of gaining further understanding of these relationships in benzhydrylurea derivatives substituted with heteroyl radicals, and to find new biologically active compounds, we have synthesized N-benzhydryl-N'-(heteroyl)ureas (I-VII and hydrochlorides VIII-X) and studied their anticonvulsive activity in maximum electric shock and corasole "titration" tests (Table 1).

Benzhydrylurea was acylated with chloranhydrides in benzene in the presence of catalytic quantities of hydrochloric acid or pyridine. Benzhydrylurea was not acylated by picolinic chloranhydride in the presence of hydrochloric acid (method A), probably because of the known tendency of picolinic acid to undergo decarboxylation in strong acids [5]. However, this difficulty was overcome by using pyridine as the catalyst for acylation of benzhydrylurea with picolinic chloranhydride (method B).

$$(Ph)_2$$
CHNHCONH₂ \xrightarrow{RCOCl} $(Ph)_2$ CHNHCONHCOR $I - X$

R: Furyl-2 (I), pyridyl-4 (II), pyridyl-3 (III), pyridyl-2 (IV), quinolyl-2 (V), 2-phenylquinolyl-4 (VI), 2-hydroxyquinolyl-4 (VII); hydrochlorides of II (VIII), III (IX), and V (X).

Hydrochlorides VIII-X were prepared by passing dry hydrogen chloride through hot ethanolic solutions of the corresponding ureas II, III, and V.

Compounds I-X were of low toxicity, with LD₅₀ values exceeding 2000 mg/kg.

Ureas I-VII and hydrochlorides VIII-X had no anticonvulsive activity in the corasole titration test. Compounds I and III-X had low activity in the maximum electric shock test, though N-benzhydryl-N'-(isonicotinoyl) urea II had higher anticonvulsive activity than benzhydrylurea itself ($ED_{50} = 47 \text{ mg/kg}$ [2]). Comparison of the anticonvulsive activities of heteroylbenzhydrylureas I-VII and their hydrochlorides VIII-X showed that the heteroyl radicals at the N'-position of benzhydrylurea produced greater reductions in activity than aliphatic and aroyl radicals at the N'-position of benzhydrylurea [4].

*See [1] for communication XVI.

Tomsk Polytechnical University. Science Research Institute of Pharmacology, Tomsk Scientific Center, Russian Academy of Medical Sciences. Translated from Khimiko-farmatsevticheskii Zhurnal, No. 8, pp. 17-18, August, 1994. Original article submitted February 25, 1993.

TABLE 1. Anticonvulsive Activities of Compounds I-X

Compound	Dose, mg/kg	Maximum electric shock test			Convulsive threshold of corasole, mg/kg		
		% prevention of convulsions	% of animals surviving	ED ₅₀ , mg/kg	M ± m, p	ACI	
I.	200	0	16,7	·	105,5±15,1 0,442	0,9	
II	200 50 20	100 66,7 33,3	100 100 83,3	33,2	$^{122,4\pm2,38}_{0,087}$	1,1	
111	200	16,7	83,3		119,1 ± 24,0 1,000	1,0	
IV	200	33,3	66,7	350	129,4±11,0 0,341	1,2	
V	200 500	16,7 33,3	66,7 50	526	104,4±8,6 0,102	0,8	
VI	200 · 500	0	83,3 33,3	_	$109,1\pm18,8 \\ 0,628$	0,9	
VII	200	0	66,7		77.4 ± 18.5 0.062	0,6	
VIII	200 500 700	0 16,7 50,0	16,7 50,0 66,7	682	$131,8 \pm 8,3 \\ 0,298$	1,1	
IX	200 600	16,7 16,7	66,7 50,0	576	$105,9 \pm 12,7$ $1,000$	1,0	
Х	200 300	16,7 33,3	33,3 33,3	344	$107,0 \pm 19,4 \\ 0,922$	1,0	

Notes. ACI = anticorasole index (ratio of experimental to control anticorasole indexes).

TABLE 2. Yields and Properties of Compounds I-X

Compound	Yield, %		Melting	Atomic formula		IR spectrum, ν _{max} , cm ⁻¹			
		method B	point, °C	Atomic formula	NH	C=0	CONHCO	COR	
I II IV V VI VII	17 18 16 15 17 18	16 15 18 17 16 18	177—8 197—8 202—4 122—3 166—7 178—80 179—81 205—7	C19H16N2O3 C20H17N3O2 C20H17N3O2 C20H17N3O2 C24H17N3O2 C30H23N3O2 C30H19N3O3 C20H19N3O3	3340 3345 3330 3350 3335 3340 3345 3355	1670 1666 1670 1670 1665 1660 1665	3220 3220 3215 3220 3235 3230 3235 3210	1710 1710 1715 1710 1715 1710 1720 1715	
VIII IX X	45 49 60	35 40 42	194—6 169—71	C ₂₀ H ₁₈ CIN ₃ O ₂ C ₂₀ H ₁₈ CIN ₃ O ₂ C ₂₄ H ₂₀ CIN ₃ O ₂	3360 3355	1660 1665	3215 3110	1710 1720	

CHEMICAL METHODS

N-Benzhydryl-N'-(heteroyl)ureas (I-VII). Method A: Chloranhydrides of the appropriate heterocarbonic acids (0.25 mole) were mixed vigorously with 0.24 mole of benzhydrylurea in 75 ml of anhydrous benzene, and the mixtures were heated to boiling point, after which 10 drops of 57% hydrochloric acid were added and reactions were incubated for 6-8 h (until HCl liberation ceased). Benzene was then evaporated off and the residue treated with a saturated solution of sodium bicarbonate, filtered, and washed with water. The precipitate was recrystallized three times from ethanol to produce compound I with a yield of 15-18%.

N-Benzhydryl-N'-(heteroyl)ureas (I-VII). Method B: The method used for acylation of benzhydrylurea with the chloranhydrides of heterocarbonic acids in the presence of pyridine and extraction of the desired products I-VIII was analogous to method A.

The properties of compounds I-X are shown in Table 2. The results of elemental analyses agreed with predicted values.

REFERENCES

- 1. A. A. Bakibaev, V. K. Gorshkova, A. Yu. Yagovkin, et al., Khim.-farm. Zh., No 8, 15-17 (1994).
- 2. V. D. Filimonov, A. A. Bakibaev, A. V. Pustovoitov, et al., Khim.-farm. Zh., No 5, 540-545 (1988).

- 3. A. G. Pechenkin, L. G. Tignibidina, V. K. Gorshkova, et al., Khim.-farm. Zh., No 5, 57-59 (1979).
- 4. A. G. Pechenkin, L. G. Tignibidina, V. K. Gorshkova, et al., Khim.-farm. Zh., No 5, 63-65 (1976).
- 5. Yu. O. Gabel', Heterocyclic Compounds [in Russian], Leningrad (1941).