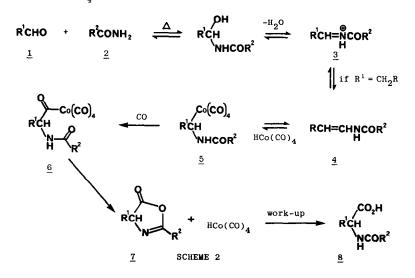

STUDIES ON THE HYDROCARBOXYLATION OF N-ACETYLIMINES, ENAMINES AND ALLYLAMINES.

Philip Magnus* and Martin Slater

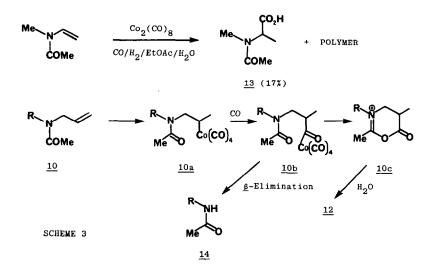

Department of Chemistry, Indiana University, Bloomington, Indiana 47405

SUMMARY: Treatment of an amide with an aldehyde in the presence of $Co_2(CO)_8/CO/H_2$ results in <u>N</u>-acyl-<u>a</u>-amino acids. The scope and limitations of this reaction are explored.

In 1975 it was reported that <u>N</u>-acylamino acids are the products from the treatment of an aldehyde and an amide with $\operatorname{Co}_2(\operatorname{CO})_g(\operatorname{cat})/\operatorname{CO}/\operatorname{H}_2$, SCHEME 1.¹ For aldehydes that do not possess an <u>a</u>-hydrogen, such as benzaldehyde, the product is that of reductive amination, namely N-acylbenzylamine. It was later established² that (S)-2-methylbutanal did not result in enantiomerically enriched <u>a</u>-<u>N</u>-acylamino acids. Ojima³ has also shown that epoxides and allylic alcohols can function as precursors to the aldehyde component, since they are isomerized by $\operatorname{Co}_2(\operatorname{CO})_p$ under the reaction conditions.

The mechanism proposed by Pino² explains some of the above observations, in particular, the formation of carboxylic acids, rather than the usual aldehydes expected from a hydroformylation-type procedure.⁴ Unfortunately, this mechanism does not account for the reductive amination or the racemisation of (S)-2-methylbutanal. This suggests that the intermediate <u>N</u> acyliminium ion <u>3</u> can lose a proton (if available) to give an <u>N</u>-acylenamine <u>4</u>, which is the species that adds HCO(CO)₄. The mechanism below accounts for these observations.

Obviously, if $\mathbb{R}^1 = \mathbb{P}h$, then $\underline{3}$ cannot lose a proton, and the <u>N</u>-acyliminium ion $\underline{3}$ is reduced by $\operatorname{HCo(CO)}_4$. The racemization of (5)-2-methylbutanal is readily explained by the isomerization $\underline{3} \rightleftharpoons \underline{4}$. The formation of <u>N</u>-acylaminocarboxylic acids is best accounted for by the regiospecific addition of $\operatorname{HCo(CO)}_4$ to $\underline{4}$ to give $\underline{5}$, followed by CO insertion to form $\underline{6}$, which can undergo azlactone $\underline{7}$ formation, and on basic work-up gives $\underline{8}$.


In this paper we explore the scope and limitations of this potentially useful process for the synthesis of <u>a</u>-amino acid derivatives. <u>N</u>-Alkyl and <u>a</u>methyl amino acids are valuable as conformationally restricted analogs, and have increased stability to enzymic degradation.⁵ As a standard reaction, it should be noted that treatment of butanal (1.0 eq)/acetamide (2.0 eq) with $\operatorname{Co}_2(\operatorname{CO})_8(3-$ 5%)/CO/H₂/145-160°C gave <u>N</u>-acetylnorvaline <u>9a</u> (72%).⁶ If this procedure is conducted at 90-100°C, the only product is the <u>bis</u>-amide, PrCH(NHCOMe)₂.⁷

		TABL	E 1	
R ¹	R ²	RATIO	SOLVENT	YIELD (%)
a. Pr	н	1:2	EtOAc	72
b. Me	Me	1:1	EtOAc	30
c. Me	Et	1:2	EtOAc	20
d. Me	Et	1:2	EtOAc	15
e. Me	Et	1:1	Dioxane	13
f. Me	Et	1:2	Dioxane	10
g. Et	Me	1:1	EtOAc	∿2
<i>h</i> . <u>n</u> -Pr	Me	1:2	EtOAc	5
R ¹ CHO + R ² NHCOMe		Co ₂ (CO) 8 (3-5%)		R ¹ CH ^{CO} 2 ^H
		CO/H2/145-160°C		<u>9</u> R ²

TABLE 1 clearly shows that <u>N</u>-substitution drastically reduces the yields of the <u>N</u>-Me and <u>N</u>-Et <u>a</u>-amino acid derivatives 9b-h. Murai⁸ has demonstrated that HSiEt₃ can replace hydrogen in the $Co_2(CO)_8$ catalyzed process, and produces $Et_3 SiCo(CO)_4$. Treatment of propanal with acetamide (2.0eq) in the presence of $Co_2(CO)_8$ (4%) and $Et_3 SiH$ (8%)/CO gave <u>9</u> (R¹=Et, R²=H)(47%). This procedure did not improve the yield of N-alkyl

systems. It appears that both <u>N</u>-substitution in the amide component, and Csubstitution in the aldehyde, conspire to reduce the effective concentration of the acyliminium species 3. Another approach to $3 \rightleftharpoons 4$, is to consider the transition metal catalyzed isomerization of allylamides to eneamides." N-Acetyl allylamine, on treatment with Co2(CO)8/Rh6 (CO)16 (11:1) in EtOAc/H20 gave 2-acetamidobutyric acid 9 ($R^1 = Et$, $R^2 = H$)(40%). None of the isomeric <u>B</u>-acid was observed. TABLE 2 shows that the rhodium catalyst was not necessary. The carbonylation of a double bond to give a carboxylic acid is an unprecedented reaction.¹⁰ It should be noted that the presence of water is necessary to hydrolyze the intermediate aslactones (see 7). The β -carboxylic acid is formed from <u>10</u> or its double bond isomer, as shown in SCHEME 3. N-vinyl-N-methylacetamide gave the $\underline{\alpha}$ -carboxylic acid¹¹ <u>13</u> as the only acid product. For the examples <u>10g</u> and 10h the major products are acetanilide and \underline{N} -acetylcyclohexylamine respectively, and can be rationalized by $\underline{\beta}$ -elimination either from <u>10b</u> or <u>10c</u> to give <u>14</u>. Finally, cyclic systems, which represent the intramolecular version of the original reaction depicted in SCHEME 1, resulted in reduction to the correspond-

R	N I Соме <u>10</u>	$\frac{Co_2(CO)}{CO/H_2}$	TABL) 8 (4%) 140-160°C	$\begin{array}{c} & & & CO_2H \\ R & & & \\ I \\ COMe \\ \underline{11} \end{array}$	+	$\stackrel{R}{\xrightarrow{N}} \stackrel{CO_2H}{\xrightarrow{I_2}}$
	R	SOLVENT	н ₂ 0	Rh ₆ (CO) ₁₆	YIELD	11/12
а.	н	EtOAc	1.0 eq	0.03%	40%	<u>11</u> only
ь.	н	EtOAc	1.0 eq	none	48%	11/12 (3.8:1)
с.	нa	EtOAc	1.0 eq	0.03%	5%	12 only
d.	Н	EtOAc	4.0 eq	none	30%	11/12 (1:1)
е.	н	DME	1.5 eq	none	28%	11/12 (1:1)
f.	н	Et ₂ 0	1.0 eq	none	10%	11/12 (4:1)
g.	Ph	EtOAc	1.5 eq	none	∿2%	12 only
h.	с ₆ н ₁₁	EtOAc	1.5 eq	none	trace	12 Only
a.	abse	nce of CO ₂ (co) 8			

ing cyclic amide, SCHEME 4.

 $EtO \begin{pmatrix} CH_2 \\ n \\ H \end{pmatrix} O \\ SCHEME 4 \end{pmatrix} \begin{pmatrix} CO_2(CO)_8 \\ CO/H_2/EtOAc \\ N \\ H \end{pmatrix} O \\ CO/H_2/EtOAc \\ N \\ H \end{pmatrix} O \\ CO/H_2/EtOAc \\ N \\ H \end{pmatrix} O \\ CO/H_2/EtOAc \\ N \\ H \\ O \\ H \\ O$

In conclusion, while the hydrocarboxylation of <u>N</u>-acetylenamines provides a direct route to <u>N</u>-acetyl-<u>a</u>-amino acids, it is evidently restricted to simple unsubstituted systems, otherwise the yields become impractical.

ACKNOWLEDGEMENTS: The National Science Foundation is thanked for their support of this work, and the funds to purchase a pressure reaction apparatus. REFERENCES AND FOOTNOTES:

- 1. H. Wakamatsu, J. Uda, and N. Yamakami, Chem. Comm., 1971, 1540.
- 2. J-J. Parnaud, G. Campari, and P. Pino, J. Mol. Catalysis, 1979, 6, 341.
- 3. I. Ojima, K. Hirai, M. Fujita, and T. Fuchikanii, <u>J. Organometallic Chem</u>., 1985, <u>279</u>, 203.
- Acyl-cobalt carbonyl complexes are cleaved by hydrogen, even in the presence of water, to give aldehydes. In the absence of hydrogen, acyl Co(CO)₃ complexes are cleaved by water in the Reppe reaction to give an acid. A. Mullen, "New Syntheses with Carbon Monoxide." Springer-Verlag, New York, 1980.
- R.J. Vavrek and J.E. Stewart, <u>Peptides</u>, 1980, <u>1</u>, 231; J.F. Calimlim, W.M.
 Wardell, K. Srivratanakul, L. Lasagne, and C. Cox, <u>Lancet</u>, 1982, 1374;
 G. Metcalf, Pharm. J., 1979, 356.
- 6. The work-up involved evaporation of the crude reaction mixture, extraction of the residue with EtOAc/10% aq Na₂Co₃, acidification of the aqueous phase with 85% H₃PO₄ at 0°C, and extraction of the product with EtOAc. Yields refer to crystalline material.
- 7. W.A. Noyes and D.B. Forman, J. Am. Chem. Soc., 1933, 55, 3493.
- N. Chatain, S. Murai, and N. Sonoda, <u>J. Am. Chem. Soc</u>., 1983, <u>105</u>, 1370;
 N. Chatain, S. Fujii, Y. Yasuhiro, S. Murai, and N. Sonoda, <u>Ibid</u>., 1986, <u>108</u>, 7361.
- 9. B. Moreau, S. Lavielle, and A. Marquet, <u>Tetrahedron Letters</u>, 1977, 2591; J.K. Stille, and Y. Becker, J. Org. Chem., 1980, <u>45</u>, 2139.
- 10. Y. Becker, A. Eisenstadt, and J.K. Stille, J. Org. Chem., 1980, 45, 2145.
- 11. J.R. Coggins and N.L. Benoiton, <u>Can. J. Chem.</u>, 1971, <u>49</u>, 1968.

(Received in USA 3 March 1987)