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Abstract. The paper presents the synthesis and liquid crystalline properties of some new symmetric bent- 
core liquid crystals containing a 1,3-dihydroxybenzene central core disubstituted with mesogenic units 
consisting of three aromatic rings connected through esteric, azomethinic and azo groups. The wings are 
ended with terminal acyloxy or alkyloxy chains containing 6 to 10 carbon atoms. Compounds were ob
tained by the condensation reactions between some 4-((4-alcanoyloxyphenyl)azo)benzaldehydes or 4-((4- 
alkyloxyphenyl)azo)benzaldehydes with the 1,3-phenylene bis(4-aminobenzoate) core. The new synthe
sized compounds were characterized from structural point of view ('H  NMR, 13C NMR, MS spectrosco
py) and liquid crystalline properties (polarizing optical microscopy and differential scanning calorimetry). 
All the banana shaped compounds presented enantiotropic liquid crystalline properties, with a wide- 
ranging stability of mesophases both on heating and cooling cycles. The synthesized compounds present
ed a good thermal stability in the existence range of the mesophases as evidenced by thermogravimetric 
studies, (doi: 10.5562/cca2150)
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INTRODUCTION

In the last period, bent-core molecules attracted consid
erable interest because of their capability to generate 
new mesophases with non-conventional properties. 
Compared to classical calamities, structure-property 
relationships in banana shaped liquid crystals are more 
difficult to predict. The main characteristic is the non
linear (bent-shaped) structure achieved by connecting 
two mesogenic groups to a central core such as 1,3- 
disubstituted benzene, 2,7-disubstituted naphthalene, 
2,5-disubstituted [l,3,4]oxadiazole, 2,5-disubstituted 
thiophene, 2,6-disubstituted pyridine etc. Several hun
dred of compounds having a bent molecular shape and 
exhibiting characteristic mesophases have been reported 
so far.

Up to now, eight phases formed by bent-core mol
ecules and designated as Br B8 have been found and 
most of them present additional sub-phases.7,8 The 
shape of banana achiral mesogens cause steric interac
tions that led to unique phases of special complexity 
from columnar (B,) to smectic (B2, B3, Bć and B7) up to 
nematic ordering.9 These “banana type phases” are 
specific phases different from conventional phases 
found in calamitic mesogens.10 Among them, the phases

Bi, B2 and B6 are the most commonly observed on ba
nana shaped compounds.1114 The smectic liquid crystal
line phase separates from isotropic liquid in a rich varie
ty of forms, from classical “batonnets” to filamentary 
shapes or helical coils in lyotropic systems. From these, 
more frequently are elongated structures consisting of 
focal-conic domains.

Probably the most interesting mesophases exhibit 
the bent-core compounds containing the thermally sen
sitive azomethine group. Among rod-shaped mesogens, 
the Schiff bases tend to order into smectic phases. Oth
erwise the first smectic mesophases of banana shaped 
molecules had azomethine connecting group between 
aromatic rings.15

The first reported bent-core compounds containing 
azo linkage into structure has been reported since 2001 
and contains six aromatic rings.16 Since then, some 
other bent shaped molecules containing azobenzene 
moieties have been synthesized, the majority of these 
molecules presenting interesting liquid crystalline prop
erties.16-24

The goal of the paper is to extent the classes of 
bent shaped molecules containing the azo photo- 
isomerisable group. The paper presents the synthesis of 
some bent-core liquid crystals based on a 1,3-dihydroxy-
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benzene core with two symmetric wings containing each 
three benzene rings connected via esteric, azomethinic 
and azo groups. One of the series ends with terminal 
acyloxy chains while the other one contains alkyloxy 
ones. The introduction of the -N=N— linkage contrib
utes to the extension of conjugation between the aro
matic rings and may induce photo-responsive properties 
due to the capacity to generate trans-cis isomerization 
under UV-VIS irradiation. All the obtained compounds 
presented enantiotropic liquid crystalline properties, 
mainly with smectic type textures.

EXPERIMENTAL

Materials

Analytical reagents such as resorcinol, p-nitrobenzoic 
acid, DCC, DMAP, were provided by Aldrich (Germa
ny) or by Merck (Germany) and were used without 
further purification. Synthesis of 3a-3e and 4a-4e com
pounds was previously reported.25 Silica gel 60 (Merck) 
was used for column chromatography (CC). The chro
matography (TLC) was performed on silica gel plates 
(Merck, silica gel F254).

Instrumentation

Confirmation of the structures of the intermediates and 
final products was obtained by ‘H NMR and l3C NMR, 
using a Bruker Avance DRX 400 MHz spectrometer 
(Rheinstein, Germany) with tetramethylsilane as inter
nal standard. Mass spectra were recorded on a quadru
p le  time-of-flight mass spectrometer equipped with an 
electrospray ion source (Agilent 6520 Accurate Mass 
Q-TOF LC=MS (Santa Clara, CA,USA).

Transition temperatures were determined using a 
Linkam heating stage and Linksys 32 temperature con
trol unit in conjunction with a Axioscop 40 Zeiss polar
izing optical microscope and Qimaging/Retiga-IOOOR 
camera for image capture, the transitions being con
firmed by DSC analysis (Mettler Toledo DSC1). All 
thermal analyses were performed on a Mettler-Toledo 
TGA SDTA851e derivatograph in an N2 atmosphere, 
with a flow rate of 20 mL min-1 and a heating rate of 
10 °C min-1 from 25 °C to 900 °C. In order to obtain 
comparable data, constant operational parameters were 
kept for all samples.

Synthesis

1,3-phenylene bis(4-nitrobenzoate) (1)
To a solution of 2 g (18.18 mmol) resorcinol in 30 mL 
anhydrous CH2C12, 6.07 g (36.36 mmol) 4-nitrobenzoic 
acid and a catalytic amount of DMAP as catalyst were 
added under stirring. Over the mixture a solution of 8.25 
g (40 mmol) DCC in 50 mL anhydrous CH2C12 was 
added. After stirring overnight at room temperature, the

diciclohexyl urea was filtered off and the solution was 
concentrated. The product was purified by column 
chromatography silicagel/dichloromethane. Yield: 5 g 
(62 %), m.p. 185 °C. 'H NMR (CDC13) 8 / ppm: 8.38 (m, 
8H, Ar), 7.55 (m, 1H, Ar), 7.25 (d, 1H, Ar, J=  1.96 Hz), 
7.23 (dd, 2H, Ar, J, = 2.16 Hz, J2 = 2.15 Hz), ,3C NMR 
(DMSO-d6) 8 / ppm: 162.95, 151.08, 151.05, 134.55, 
131.38, 130.32, 123.84, 119.50, 115.47 (-O -C O  + 
8 C, aromatic).

1.3- phenylene bis(4-aminobenzoate) (2)
1 g (2.45 mmol) 1,3-phenylene bis(4-nitrobenzoate) (1) 
was dissolved under reflux in 50 mL anhydrous ethanol 
and 5.54 g (12.25 mmol) SnCl2-2H20  (as a solid) was 
added in several portions. The mixture was heated under 
stirring and reflux for 6 hours. After cooling, the reac
tion mixture was poured in a beaker containing ice wa
ter and treated with a solution of 5 % NaOH until the 
pH = 8. The fine organic suspension was extracted sev
eral times with ethyl acetate, the collected extracts were 
washed several times with water, dried up with MgS04 
and then concentrated. The purification of the product 
was made by recrystallization from diethyl ether. Yield: 
0.6 g (60 %), m.p. 192 °C. ]H NMR (DMSO-d6) 8 / 
ppm: 7.82 (d, 4H, Ar, J=  8.70 Hz), 7.48 (m, 1H, Ar), 
7.13 (m, 3H, Ar), 6.66 (d, 4H, Ar, J  = 8.71 Hz), 6.20 
(s, 4H, 2* -NH2), 13C NMR (DMSO-d6) 8 / ppm: 164.2, 
154.14, 151.33, 131.81, 129.48, 119.04, 116.14, 114.08, 
112.63 (—O—C=0 + 8 C, aromatic).

General procedure for the synthesis o f the Schiff Bases
5a-5e and 6a-6e
1.3- Phenylene bis(4-aminobenzoate) (2) and the corre
sponding 3a-3e or 4a-4e aldehydes were refluxed un
der stirring, for two hours, in anhydrous ethanol con
taining a few drops of glacial acetic acid as catalyst. The 
obtained suspension was filtered while hot and washed 
twice with ethanol. The resulting products were purified 
by recrystallization from ethanol.

1.3- phenylene bis(4-(4-((4-hexanoyloxyphenyl)azo)ben- 
zylideneamino)benzoate) (5a)
Quantities: 0.25 g (0.72 mmol) 1,3-phenylene bis(4- 
aminobenzoate) (2) in 15 mL ethanol, 0.46 g (1.44 
mmol) 4-((4-hexanoyloxyphenyl)azo)benzaldehyde (3a) 
in 15 mL ethanol, glacial acetic acid (1-2 drops), yield: 
0.35 g (51 %), liquid crystal: 169 °C (Ki/K2), 202 °C 
(K2/LC), 315 °C (LC/I), 307 °C (I/LC), 193 °C (LC/K,), 
166 °C (K,/K2). 'H NMR (CDC13) 8 / ppm: 8.53 (s, 2H, 
2* -CH=N-), 8.25 (d, 4H, Ar, J  = 8.55 Hz), 8.08 (d, 
4H, Ar, J=  8.33 Hz), 8.01 (d, 4H, Ar, J=  8.77 Hz), 7.98 
(d, 4H, Ar, J  -  8.77 Hz), 7.48 (m, 1H, Ar), 7.29 (m, 9H, 
Ar), 7.20 (dd, 2H, Ar, Jx = 8.33 Hz, J2 = 8.11 Hz), 
2.58 (t, 4H, 2* -0-CO-CH2-), 1.80 (qv, 4H, 2* -CH2-), 
1.43 (m, 8H, 4* -CH2-), 0.95 (t, 6H, 2* -CH3), 
,3C NMR (CDCI3) 8 / ppm: 171.73, 164.46, 160.77, 
156.88, 154.72, 153.53, 151.81, 150.42, 137.87, 131.65, 
130.03, 128.78, 126.99, 124.35, 123.37, 122.33, 120.97,
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119.17, 115.86 (2 * -0 -0 = 0  + -CH=N- +16 C, aroma
tic), 34.51, 31.34, 24.64, 22.30, 13.81 (5C, aliphatic), 
mlz: 959.96 [M]+.

1.3- phenylene bis(4-(4-((4-heptanoyloxyphenyl)azo) ben- 
zylideneamino)benzoate) (5b)
Quantities: 0.25 g (0.72 mmol) 1,3-phenylene bis(4- 
aminobenzoate) (2) in 15 mL ethanol, 0.49 g (1.44 mmol) 
4-((4-heptanoyloxyphenyl)azo)benzaldehyde (3b) in 15 
mL ethanol, glacial acetic acid (1-2 drops), yield: 0.33 g 
(46.5 %), liquid crystal: 164 °C (K,/K2), 209 °C (K2/ 
LC), 304 °C (LC/I), 302 °C (I/LC), 200 °C (LC/K,), 
158 °C (K,/K2). 'H NMR (CDCIj) S / ppm: 8.53 (s, 2H, 
2* -CH=N-), 8.24 (d, 4H, Ar, J  = 8.11 Hz), 8.07 (d, 
4H, Ar, J  = 7.89 Hz), 7.99 (m, 8H, Ar), 7.48 (m, 1H, 
Ar), 7.29 (m, 9H, Ar), 7.20 (dd, 2H, Ar, J, = 8.33 Hz, 
J2 = 8.11 Hz), 2.58 (t, 4H, 2* -O -CO -CH j-), 1.78 (qv, 
4H, 2* -CH2-), 1.40 (m, 12H, 6* -CH2-), 0.92 (t, 6H, 
2* -CHj), I3C NMR (CDCIj) 8 / ppm: 171.74, 164.45,
160.77, 156.84, 154.67, 153.49, 151.78, 150.38, 137.87,
131.63, 130.02, 129.78, 126.95, 124.34, 123.36, 122.32, 
120.97, 119.16, 115.85, (2* -0 -C = 0  + -CH=N - +16 
C, aromatic), 34.53, 31.46, 28.80, 24.92, 22.47, 13.92 
(6C, aliphatic), mlz: 987.72 [M]+.

1.3- phenylene bis(4-(4-((4-octanoyloxyphenyl)azo)ben- 
zylideneamino)benzoate) (5c)
Quantities: 0.25 g (0.72 mmol) 1,3-phenylene bis(4- 
aminobenzoate) (2) in 15 mL ethanol, 0.51 g (1.44 
mmol) 4-((4-octanoyloxyphenyl)azo)-benzaldehyde (3c) 
in 15 mL ethanol, glacial acetic acid (1-2 drops), yield: 
0.38 g (52 %), liquid crystal: 146 °C (K,/K2), 207 °C 
(K2/LC), 285 °C (LC/I), 277 °C (I/LC), 190 °C (LC/K,). 
'H NMR (CDCIj) 8 / ppm: 8.52 (s, 2H, 2* 
—CH=N—), 8.24 (d, 4H, Ar, J  = 7.90 Hz), 8.07 (d, 4H, 
Ar, J  = 7.89 Hz), 8.00 (d, 4H, Ar, J=  8.98 Hz), 7.98 (d, 
4H, Ar, J  = 8.99 Hz), 7.47 (m, 1H, Ar), 7.29 (m, 9H, 
Ar), 7.19 (d, 2H, Ar, J  = 7.90 Hz), 2.58 (t, 4H, 2* 
-0 -C O -C H 2-), 1.78 (qv, 4H, 2* -CH2-), 1.44 (m, 16H, 
8* -CH2-), 0.91 (t, 6H, 2* -CHj), 13C NMR (CDCIj) 6 / 
ppm: 171.74, 164.44, 160.77, 156.84, 154.67, 153.49,
151.78, 150.38, 137.87, 131.63, 130.02, 129.78, 126.94, 
124.34, 123.36, 122.32, 120.97, 119.16, 115.85, (2* 
-0 -C = 0  + -CH=N— + 16 C, aromatic), 34.52, 31.67, 
29.11, 28.90, 24.96, 22.58, 13.97 ( 7C, aliphatic), m/z: 
1015.48 [M-l]+.

1.3- phenylene bis(4-(4-((4-nonanoyloxyphenyl)azo)ben- 
zylideneamino)benzoate) (5d)
Quantities: 0.25 g (0.72 mmol) 1,3-phenylene bis(4- 
aminobenzoate) (2) in 15 mL ethanol, 0.53 g (1.44 
mmol) 4-((4-nonanoyloxyphenyl)azo)benzaldehyde (3d) 
in 15 mL ethanol, glacial acetic acid (1-2 drops), yield: 
0.4 g (53 %), liquid crystal: 148 °C (K,/K2), 202 °C 
(K2/LC), 288 °C (LC/I), 285 °C (I/LC), 190 °C (LC/K,), 
86 °C (K,/K2). ‘H NMR (CDCIj) <5 / ppm: 8.52 (s, 2H, 
2* -CH=N-), 8.24 (d, 4H, Ar, J  = 8.55 Hz), 8.07 (d,

4H, Ar, J  = 8.55 Hz), 7.99 (m, 8H, Ar), 7.47 (m, 1H, 
Ar), 7.28 (m, 9H, Ar), 7.20 (dd, 2H, Ar, J, = 8.12 Hz, J2 
= 8.33 Hz), 2.58 (t, 4H, 2* -0 -C O -C H 2-), 1.78 (qv, 
4H, 2* -C H 2-), 1.36 (m, 20H, 10* -CH2-), 0.90 (t, 6H, 
2* -CHj), 13C NMR (CDCIj) 5 / ppm: 171.74, 164.44, 
160.75, 156.87, 154.73, 153.54, 151.83, 150.43, 137.91,
131.64, 130.03, 129.77, 127.00, 124.34, 123.36, 122.32, 
120.97, 119.15, 115.84, (2* -0 -C = 0  + -CH=N - +16 
C, aromatic), 34.55, 31.83, 29.22, 29.17, 29.11, 24.97, 
22.62, 13.97 (8C, aliphatic), m/z: 1044.49 [M]+.

1.3- phenylene bis(4-(4-((4-decanoyloxyphenyl)azo)ben- 
zylideneamino)benzoate) (5e)
Quantities: 0.25 g (0.72 mmol) 1,3-phenylene bis(4- 
aminobenzoate) (2) in 15 mL ethanol, 0.55 g (1.44 
mmol) 4-((4-decanoyloxyphenyl)azo)benzaldehyde (3e) 
in 15 mL ethanol, glacial acetic acid (1-2 drops), yield: 
0.3 g (39 %), liquid crystal: 148 °C (K,/K2), 195 °C 
(K2/LC), 287 °C (LC/I), 285 °C (I/LC), 185 °C (LC/K,), 
178 °C (K,/K2). 'H NMR (CDCIj) 6 / ppm: 8.53 (s, 2H, 
2* -CH=N-), 8.25 (d, 4H, Ar, J  = 8.33 Hz), 8.08 (d, 
4H, A i,J=  8.55 Hz), 8.01 (d, 4H, Ar, J=  8.77 Hz), 7.98 
(d, 4H, Ar, J=  8.77 Hz), 7.48 (m, 1H, Ar), 7.28 (m, 9H, 
Ar), 7.20 (dd, 2H, Ar, J, = 8.20 Hz, J2 = 2 Hz), 2.58 (t, 
4H, 2* -0 -C O -C H 2-), 1.78 (qv, 4H, 2* -CH2-), 1.39 
(m, 24H, 12* -CH2-), 0.89 (t, 6H, 2* -CH3), l3C NMR 
(CDCIj) 5 /ppm: 171.76, 164.45, 160.79, 156.85, 154.66, 
153.49, 151.76, 150.37, 137.86, 131.64, 130.02, 129.79, 
126.93, 124.34, 123.37, 122.32, 120.97, 119.18, 115.85, 
(2* -0 -C = 0  + -CH=N— +16 C, aromatic), 34.52, 
31.88, 29.43, 29.27, 29.25, 29.15, 24.96, 22.65, 14.02 
(9C, aliphatic), m/z: 1071.01 [M-l]+.

1.3- phenylene bis(4-(4-((4-hexyloxyphenyl)azo)benzyl- 
ideneamino)benzoate) (6a)
Quantities: 0.25 g (0.72 mmol) 1,3-phenylene bis(4- 
aminobenzoate) (2) in 15 mL ethanol, 0.44 g (1.44 
mmol) 4-((4-hexyloxyphenyl)azo)benzaldehyde (4a) in 
15 mL ethanol, glacial acetic acid (1-2 drops), yield: 
0.41 g (61.2 %), liquid crystal: 159 °C (K,/K2), 181 °C 
(K2/LCi), 215 °C (LC,/LC2), 294 °C (LC2/I), 293 °C 
(I/LC,), 202 °C (LC,/LC2), 197 °C (LC2/K,), 149 °C 
(K,/K2). 'H NMR (CDCIj) 8 / ppm: 8.52 (s, 2H, 2* 
-CH=N-), 8.24 (d, 4H, Ar, J  = 8.33 Hz), 8.05 (d, 4H, 
Ar, J=  8.33 Hz), 7.97 (d, 4H, Ar, J  = 8.55 Hz), 7.94 (d, 
4H, Ar, J =  8.99 Hz), 7.47 (m, 1H, Ar), 7.29 (d, 4H, Ar, 
J=  8.55 Hz), 7.24 (m, 1H, Ar), 7.19 (dd, 2H, Ar, J x = 
8.12 Hz, J2 = 8.11 Hz), 7.01 (d, 4H, Ar, J=  8.99 Hz), 
4.06 (t, 4H, 2* -0 -C H 2-), 1.83 (qv, 4H, 2* -CH2-), 
1.50 (qv, 4H, 2* -C H 2-), 1.36 (m, 8H, 4* -C H 2), 0.92 
(t, 6H, 2* -CHj). 13C NMR (CDCIj) d / ppm: 164.47, 
162.44, 160.94, 157.01, 155.06, 151.82, 147.28, 137.23,
131.64, 130.01, 129.76, 126.88, 125.18, 123.08, 120.97, 
119.16, 115.85, 115.01, (-0 -C = 0  + -CH =N - + 16 C, 
aromatic), 68.64 (-0 -C H 2), 31.60, 29.25, 25.73, 22.58, 
13.91 (5C, aliphatic), m/z: 932.30 [M]+.
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1.3- phenylene bis(4-(4-((4-heptyloxyphenyl)azo)benzyl- 
ideneamino)benzoate) (6b)
Quantities: 0.25 g (0.72 mmol) 1,3-phenylene bis(4- 
aminobenzoate) (2) in 15 mL ethanol, 0.47 g (1.44 
mmol) 4-((4-heptyloxyphenyl)azo)benzaldehyde (4b) in 
15 mL ethanol, glacial acetic acid (1-2 drops), yield: 
0.37 g (53.6 %), liquid crystal: 151 °C (K,/K2), 181 °C 
(K2/LCi), 213 °C (LCi/LC2), 278 °C (LC2/I), 274 °C 
(I/LC), 201 °C (LC/K,), 145 °C ( K i / K 2 ) .  *H NMR 
(CDC13) 3 / ppm: 8.52 (s, 2H, 2* -CH=N-), 8.24 (d, 4H, 
Ar, J=  8.33 Hz), 8.05 (d, 4H, Ar, J=  8.33 Hz), 7.97 (d, 
4H, Ar, J  = 8.55 Hz), 7.94 (d, 4H, Ar, J=  8.99 Hz), 7.48 
(m, 1H, Ar), 7.30 (d, 4H, Ar,J =  8.33 Hz), 7.24 (m, 1H, 
Ar), 7.20 (dd, 2H, Ar, J , = 8.30 Hz, J2 = 2.20 Hz), 7.01 
(d, 4H, Ar, J  = 8.99 Hz), 4.06 (t, 4H, 2* -0 -C H 2-), 
1.83 (qv, 4H, 2* -CH2-), 1.49 (qv, 4H, 2* -CH2-), 1.30 
(m, 12H, 6* -CH2), 0.91 (t, 6H, 2* -C H 3), 13C NMR 
(CDCI3) d / ppm: 164.49, 162.45, 160.94, 157.01, 155.07, 
151.82, 147.27, 137.23, 131.63, 130.01, 129.77, 126.87, 
125.18, 123.08, 120.98, 119.16, 115.87, 115.02, ( - 0 -  
C=0 + -CH =N - +16 C, aromatic), 68.65 (-0 -C H 2), 
31.80, 29.29, 29.05, 26.04, 22.59, 13.97 (6C, aliphatic), 
m/z: 960.05 [M]+.

1.3- phenylene bis(4-(4-((4-octyloxyphenyl)azo)benzyl- 
ideneamino)benzoate) (6c)
Quantities: 0.25 g (0.72 mmol) 1,3-phenylene bis(4- 
aminobenzoate) (2) in 15 mL ethanol, 0.49 g (1.44 
mmol) 4-((4-octyloxyphenyl)azo)benzaldehyde (4c) in 
15 mL ethanol, glacial acetic acid (1-2 drops), yield: 
0.31 g (43.6 %), liquid crystal: 135 °C (K,/K2), 201 °C 
(K2/LC), 267 °C (LC/I), 263 °C (I/LC), 185 °C (LC/K,), 
130 °C (K,/K2). 'H NMR (CDCI3) 6 / ppm: 8.51 (s, 2H, 
2* -CH=N-), 8.24 (d, 4H, Ar, J  = 8.33 Hz), 8.05 (d, 
4H, Ar, J=  8.33 Hz), 7.97 (d, 4H, Ar, J  = 8.55 Hz), 7.94 
(d, 4H, Ar, J=  8.99 Hz), 7.47 (m, 1H, Ar), 7.29 (d, 4H, 
Ar,J =  8.55 Hz), 7.24 (m, 1H, Ar), 7.19 (dd, 2H, Ar, J, 
= 8.12 Hz, J2 = 8.33 Hz), 7.01 (d, 4H, Ar,J =  8.99 Hz), 
4.06 (t, 4H, 2* -0 -C H 2-), 1.83 (qv, 4H, 2* -CH2-), 
1.49 (qv, 4H, 2* -CH2-), 1.33 (m, 16H, 8* -CH2), 0.91 
(t, 6H, 2* -C H 3), 13C NMR (CDC13) 6 / ppm: 164.48, 
162.44, 160.93, 156.99, 155.06, 151.81, 147.26, 137.21, 
131.63, 130.01, 129.77, 126.86, 125.17, 123.07, 120.98, 
119.16, 115.86, 115.01 ( -O -C O  + -CH=N- + 16 C, 
aromatic), 68.64 (-0 -C H 2), 31.83, 29.36, 29.27, 29.22, 
26.08, 22.64, 13.99 (7C, aliphatic), m/z: 988.79 [M]+.

1.3- phenylene bis(4-(4-((4-nonyloxyphenyl)azo)benzyl- 
ideneamino)benzoate) (6d)
Quantities: 0.25 g (0.72 mmol) 1,3-phenylene bis(4- 
aminobenzoate) (2) in 15 mL ethanol, 0.5 g (1.44 mmol) 
4-((4-nonyloxyphenyl)azo)benzaldehyde (4d) in 15 mL 
ethanol, glacial acetic acid (1-2 drops), yield: 0.38 g 
(52 %), liquid crystal: 195 °C (K/LC), 260 °C (LC/I), 
257 °C (I/LC), 169 °C (LC/K). 'H NMR (CDC13) d / 
ppm: 8.52 (s, 2H, 2* -CH=N-), 8.24 (d, 4H, Ar, J  =

8.33 Hz), 8.05 (d, 4H, Ar, J=  8.33 Hz), 7.97 (d, 4H, Ar, 
J =  8.33 Hz), 7.94 (d, 4H, Ar, J  = 8.77 Hz), 7.48 (m, 
1H, Ar), 7.30 (d, 4H, Ar, J  = 8.55 Hz), 7.24 (m, 1H, 
Ar), 7.19 (dd, 2H, Ar, J, = 8.12 Hz, J2 = 8.11 Hz), 7.01 
(d, 4H, Ar, J  = 8.99 Hz), 4.06 (t, 4H, 2* -0 -C H 2-), 
1.83 (qv, 4H, 2* -CH2-), 1.49 (qv, 4H, 2* -CH2-), 1.34 
(m, 20H, 10* -C H 2), 0.89 (t, 6H, 2* -CH3), 13C NMR 
(CDCI3) 8 / ppm: 164.49, 162.44, 160.95, 156.99, 155.05, 
151.80, 147.25, 137.21, 131.63, 130.01, 129.78, 126.85, 
125.17, 123.07, 120.98, 119.17, 115.87, 115.01 ( - 0 -  
C=0 + -CH=N- + 16 C, aromatic), 68.63 (-0 -C H 2), 
31.90, 29.54, 29.40, 29.28, 29.25, 26.07, 22.66, 14.00 
(8C, aliphatic), m/z: 1016.58 [M]+.

1,3-phenylene bis(4-(4-((4-decyloxyphenyl)azo)benzyl- 
ideneamino)benzoate) (6e)
Quantities: 0.25 g (0.72 mmol) 1,3-phenylene bis(4- 
aminobenzoate) (2) in 15 mL ethanol, 0.52 g (1.44 
mmol) 4-((4-decyloxyphenyl)azo)benzaldehyde (4e) in
15 mL ethanol, glacial acetic acid (1-2 drops), yield: 
0.31 g (41.3 %), liquid crystal: 152 °C (K,/K2), 177 °C 
(K2/LC), 259 °C (LC/I), 257 °C (I/LC), 166 °C (LC/K,), 
149 °C (K,/K2). 'H NMR (CDC13) d / ppm: 8.52 (s, 2H, 
2* -CH=N-), 8.24 (d, 4H, Ar, J  = 8.33 Hz), 8.06 (d, 
4H, Ar, J = 8.33 Hz), 7.97 (d, 4H, Ar, J=  8.33 Hz), 7.94 
(d, 4H, Ar,J =  8.77 Hz), 7.48 (m, 1H, Ar), 7.30 (d, 4H, 
Ar, J=  8.33 Hz), 7.25 (m, 1H, Ar), 7.19 (dd, 2H, Ar, J x = 
8.12 Hz, J2 = 8.11 Hz), 7.01 (d, 4H, Ar, J  = 8.77 Hz), 
4.06 (t, 4H, 2* -0 -C H 2-), 1.83 (qv, 4H, 2* -CH2-), 
1.49 (qv, 4H, 2* -CH2-), 1.35 (m, 24H, 12* -CH2), 
0.89 (t, 6H, 2* -CH3). 13C NMR (CDC13) 3 / ppm: 
164.48, 162.43, 160.96, 156.98, 155.03, 151.77, 147.22, 
137.19, 131.63, 130.01, 129.78, 126.83, 125.17, 123.07, 
120.98, 119.17, 115.87, 114.99 (-0 -C = 0  + -C H = N -+
16 C, aromatic), 68.62 (-0 -C H 2), 31.92, 29.58, 29.56, 
29.40, 29.31, 29.27, 26.07, 22.67, 14.02 (9C, aliphatic), 
m/z: 1043.32 [M-l]+.

RESULTS AND DISCUSSION 

Synthesis

The bent-core Schiff Bases were obtained by the bis- 
condensation reactions between the 1,3-phenylene 
bis(4-aminobenzoate) core (2) and the corresponding 
mesogenic aldehydes 3a-3e or 4a-4e (Scheme 1). 
Compounds 2 and 3a-3e or 4a-4e were refluxed in 
anhydrous ethanol in the presence of glacial acetic acid 
as catalyst. The core compound 2 was obtained in two 
steps. In the first step, resorcinol was reacted with 
4-nitrobenzoic acid in the presence of DCC / DMAP. 
The obtained 1,3-phenylene bis(4-nitrobenzoate) (1) 
was reduced to 1,3-phenylene bis(4-aminobenzoate) (2) 
by adding in several portions solid SnCl2 • 2H20 . Com
pounds 3a-3e were synthesized by treating 4-((4- 
hydroxyphenyl)azo)benzaldehyde with the correspond-
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COOH

Scheme 1. Synthesis of the Schiff bases based on a 1,3-phenylene bis(4-aminobenzoate) core

ing M-aliphatic carboxylic acids in the presence of DCC 
and DMAP.14 The synthesis of intermediates 4a-4e 
involved the Williamson etherification of 4-((4-hydroxy- 
phenyl)azo)benzaldehyde with the corresponding /7-alkyl 
bromides in ethanol in the presence of KOH.5

Liquid Crystalline Properties

Polarized optical microscopy (POM) and differential 
scanning calorimetry (DSC) investigations evidenced for 
all the synthesized compounds enantiotropic liquid crys
talline properties, mainly with different smectic or nemat
ic textures. The domains of the existence of the 
mesophases are quite wide for both 5a-5e and 6a 6e 
classes (between 63 and 114 °C, Table 1). Thermogravi- 
metric studies evidenced a good thermal stability for all the 
obtained compounds, in all the cases the r onset values being 
superior to the isotropisation temperatures (Table 1.).

The 5a-5e Schiff bases contain an esteric group in 
the terminal chain. DSC investigations evidenced for all 
the 5a-5e compounds three transitions, both on the

heating and cooling cycles. Figure la presents, as an 
example, the DSC curves of compound 5e.

In the case of the first two compounds of the se
ries, 5a and 5b, the Tonset values are very close to the 
clearing points and Table 1 presents the isotropisation 
temperatures observed during the POM investigations. 
For compound 5a the mesophase started on heating at 
202 °C with a smectic like texture which maintained up 
to isotropisation at 315 °C (Figure 2a). Upon cooling 
from the isotropic liquid, a nematic phase appeared for a 
wide temperature interval of about 78 °C with character
istic Schlieren nematic texture (Figure 2b). On further 
cooling, the Schlieren texture transformed into a smectic 
one that maintained down to 193 °C when crystalliza
tion occurred.

Although the compound 5b presented similar val
ues of the temperature transitions as 5a, it has not 
showed nematic textures on cooling, only smectic order
ing being evidenced for an interval of about 100 °C 
(Figure 2c).
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Table 1. Transition temperatures (expressed in °C) and transition enthalpies (expressed in Jg ') for compounds 5a-e and 6a-e

Compound k , /k 2 k 2/k 3 k 3/ lc LC/I I/LC LQ/LQ, LCj/K, k ,/k 2 T (a) / op
1 onset '

5a n = 5 169
[-3] - 202

[-13] 315(b) 307W - 193
[14]

166
[2]

324

5b n =  6 164
[-2]

- 209
[-13]

304(b) 302(b) - 200
[17]

158
[3]

329

5c n =  7 146
[-30] - 207

[-14]
285

[-20]
277
[12] - 190

[14] - 328

5d n = 8 148
[-29] - 202

[-17]
288

[-20]
285
[19] - 190

[17]
86

[29] 325

5e n = 9 148
[-27] - 195

[-17]
287

[-18]
285
[18] - 185

[16]
78

[24]
329

6a n = 6
159
[-5]

181
[-4]

215
[-15]

294
[-17]

293
[17]

202
[15]

197
[0.5]

149
[H ]

335

6b n = l 151
[-5]

181
[-6]

213
[-18]

276
[-17]

274
[17] -

201
[18]

145
[6]

350

6c n =  8 136
[-0.8] - 202

[-16]
267

[-19]
263
[15] - 185

[15]
130
[1]

348

6d n =  9 - - 195
[-20]

260
[-22]

257
[22] - 169

[20] - 355

6e n = 10 152
[-1]

- 177
[-21]

259
[-20]

257
[20] - 166

[21]
149

[0.8] 345

(a) Toma -  temperature at which thermal degradation begins.
(b) Data obtained from POM investigations.

Abbreviations: K-crystalline, LC-liquid crystal, I-isotropic

185

120 160 200 240

77 °C

Figure 1. DSC curves: compound 5e (a): 1-first heating; 2- first cooling; 6a (b): 1-second heating; 2- first cooling.

280

The increasing of the length of the terminal 
acyloxy chain resulted in the slight decreasing of both 
melting and clearing temperatures for compounds 5c- 
5e. An interesting behavior showed compound 5c both 
on heating and cooling cycles. During the first heating, 
at 207 °C ordering in oily streaks like appearance be
gan (Figure 3a) which changed near the isotropisation

temperature to a focal conic texture (Figure 3b). On 
the first cooling from the isotropic liquid, lath-like and 
circular smectic type textures were evidenced (Figures 
3c, 3d). The smectic ordering maintained on the sec
ond heating but the second cooling debuted with a 
short nematic Schlieren phase (Figure 3e) that changed 
to a smectic one at 263 °C.
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Figure 2. Optical textures: 5a, 303 °C, first heating (a); 5a, 274 °C, first cooling (b); 5b, 219 °C, first cooling (c).

Figure 3. Optical textures of compound 5c: 234 °C, first heating (a); 282 °C, first heating (b); 277 °C, first cooling (c); 196 °C, 
first cooling (d); 262 °C, second cooling (e).

The last two compounds of the series showed similar 
thermal behavior and textures. On heating compounds 5d 
and 5e ordered in an unidentified mesophase as thin fila
ments (Figure 4a). On cooling, a nematic phase appeared 
for a short time accompanied by fan-shaped textures (Fig
ure 4b) that grew up into an unidentified mesophase that 
maintained down for about 100 °C (Figure 4c).

The 6a-6e class of Schiff bases containing the less 
polar alkyloxy terminal chain evidenced a similar liquid 
crystalline behavior with the 5a-5e series. The transi
tion temperatures have slightly lower values if com
pared with the 5a-5e series. The stability ranges of the 
mesophases maintains on a wide interval, between 63 
and 82 °C on heating and 73 and 96 °C on cooling.
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Figure 4. Optical textures: 5e, 272 °C, first heating (a); 5d, 249 °C, first cooling (b); 5e, 250 °C, first cooling (c).

Figure lb presents as an example the DSC curves 
for compound 6a.

On heating, compound 6a evidenced an unspecific 
smectic texture; on cooling from the isotropic liquid a 
lath-like texture that developed into a dense texture 
(Figure 5a). On cooling, the DSC curve evidenced at 
202 °C a new LC/LC transition which could not be seen 
on POM investigations and that maintained up to 197 
°C when crystallization took place. Similar textures 
appeared for compound 6b (Figure 5b).

Compound 6c showed similar characteristic fan
like textures on cooling from the isotropic state which 
finally developed into unidentified texture that main
tained up to crystallization (181 °C) (Figure 5c).

Compounds 6d and 6e presented similar textures 
on heating but different ones during the cooling cycles. 
In the case of compound 6d, a lath-like textures with 
stripes running across could be evidenced (Figure 6a), 
while for compound 6e, around 167 °C, near the crystal
lization point, some circular and elongated domains

Figure 5. Optical textures: 6a, 200 °C, second cooling (a); 6b, 274 °C, second cooling (b); 6c, 217 °C, second cooling (c).

Figure 6. Optical textures: 6d, 229 °C, second cooling (a); 6e, 209 °C, second cooling (b); 6e, 167 °C, second cooling (c).
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♦  Series 5, heating 
■ Series 5, cooling 
A Series 6, Heating 

Series 6, cooling
------ Linear (Series 5, heating)
-------Linear (Series 5, cooling)

-------Linear (Series 6, cooling)
-------Linear (Series 6, Heating)

Figure 7. Domains of the mesophases stabilities for 5a-5e and 6a-6e series.

grew up from the smectic texture, which are similar 
with the arrangements observed for the B7 phase.

By comparing the mesophase stability for the two 
series of banana Schiff Bases, it has been noted that 
acyloxy derivatives 5a-5e generally showed a wider 
mesophase domain both on heating and cooling stages 
(Figure 7).

The presence of the more polar esteric linking 
groups between the aromatic rings and the terminal 
flexible chain in compounds 5a-5e slightly increases 
the physical interactions between the molecules in the 
liquid crystalline state. The mesophase stability of 
acyloxy compounds 5a-5e may be explained by the 
extended conjugated system combined with the 
strengthening of the lateral interactions too.

CONCLUSIONS

Two series of symmetric bent-core Schiff bases have 
been obtained by reacting the 1,3-phenylene bis(4-amino- 
benzoate) core with some 4-((4-alcanoyloxyphenyl)azo)- 
benzaldehydes or 4-((4-alkyloxyphenyl)azo)benzalde- 
hydes in the presence of glacial acetic acid as catalyst. 
The obtained compounds were characterized from the 
structural point of view ('H NMR, i3C NMR, MS). All 
the synthetized Schiff bases presented enantiotropic 
liquid crystalline properties, with a wide stability of 
mesophases both on heating (between 63 and 113 °C) 
and cooling cycles (between 73 and 114 °C) as evi
denced by POM and DSC investigations. The observed 
liquid crystalline textures were mainly of smectic type.

Compounds with acyloxy terminal flexible chains 
presented wider mesophase stabilities both on heating and 
cooling cycles if compared with the alkyloxy analogues.
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