trometer used in these studies was provided by NIH Grant GM27551

Registry No. $[(EtO)_3SiCH_2CH_2PPh_2]Ru(CO)_4$, 80441-14-1; [(EtO)₃SiCH₂CH₂PPh₂]₃Ru₃(CO)₉, 80447-60-5; SiO₂, 7631-86-9; Ru-(CO)₄(PPh₂Me), 57894-45-8; [(EtO)₃SiCH₂CH₂PPh₂]Ru(CO)₃PPh₃, 80441-15-2; [(EtO)₃SiCH₂CH₂PPh₂]Ru(CO)₃(P(OCH₂)₃CCH₂CH₃), 80441-16-3; Ru₃(CO)₉(PPh₂Me)₃, 38686-56-5.

Gas-Phase Reactions of Certain Nucleophiles with Alkyl Trifluoroacetates. A New Probe To Distinguish between S_N2 and E2 Mechanisms for Alkyl Derivatives

Richard N. McDonald* and A. Kasem Chowdhury

Department of Chemistry, Kansas State University Manhattan, Kansas 66506 Received July 6, 1981

The gas-phase reactions of methyl trifluoroacetate with several nucleophiles appeared to proceed exclusively by the most excergic reaction channel available, an S_N2 displacement by the nucleophile on the methyl carbon and formation of CF₃CO₂⁻ (reaction 1).^{1,2}

Reactions 2 and 3 illustrate two other potential product-forming channels for the reaction of D₃CO⁻ with F₃CCO₂CH₃; formation of H₃CO⁻ (reaction 3) was not observed.¹ When this reaction, using H₃CO⁻, was repeated in our flowing in afterglow (FA) apparatus (conditions: helium buffer gas, $P_{\text{He}} = 0.5 \text{ torr}$, $\bar{v} = 80 \text{ m s}^{-1}$, 298 K)³ to determine the rate constant $[(1.7 \pm 0.2) \pm 10^{-9}]$ cm³ molecule⁻¹ s⁻¹], we observed that small amounts of F_3C^- (m/z69) were produced, going through a maximum (10% of total product signals) in the early stages of the reaction.⁴ We wish to report our preliminary results of the related gas-phase reactions of allyl anion with F_3CCO_2R , $R = CH_3$, C_2H_5 , and t- C_4H_9 , which establish that (a) both displacement on R and carbonyl addition are competitive, product-forming channels, (b) another pathway yielding F₃C⁻ is the decomposition of excited F₃CCO₂⁻ formed in highly exoergic nucleophilic displacement processes, and (c) the decomposition of excited $F_3CCO_2^- \rightarrow F_3C^- + CO_2$ (and related decompositions) is useful to distinguish between S_N2 displacement vs. E2 elimination mechanisms in the reactions of C₂H₅X substrates with anions

To enable us to identify both competitive displacement and addition reaction pathways and to insure that F₃C⁻ could not reasonably be formed by decomposition of the carbonyl addition adduct, we have used allyl anion⁵ (C₃H₅⁻) as the nucleophile. C₃H₅ is kinetically a good nucleophile in its reactions with H₃CX compounds,6 and the anionic decomposition products from the

addition adduct 1 ($R = CH_3$) would be the delocalized enolate anions H₂C=CH-CH=C(-O-)CF₃ and/or H₂C=CH-C-H=C(-O-)OCH3 formed by loss of CH3OH and F3CH, respectively⁷ (discussed below).

The reaction of C₃H₅ with F₃CCO₂CH₃ occurred with essentially every collision, $k = (1.7 \pm 0.1) \times 10^{-9} \text{ cm}^3 \text{ molecule}^{-1}$ s^{-1.9a} The final anion reaction products (addition of 2.4×10^{11} molecules cm⁻³ of ester, $P_{\text{He}} = 0.5$ torr, $\bar{v} = 80 \text{ m s}^{-1}$, 298 K)³ were F₃CCO₂⁻ (m/z 113), F₃C⁻ (m/z 69), H₂C=CHCH=C(-O⁻)OCH₃ (m/z 99), H₂C=CHCH=C(-O⁻)CF₃ (m/z 137), and (F₃C)₂C(-O⁻)OCH₃ (m/z 197) in the ratio of 55:23:8:7:7, respectively. From the plot of log ion signal vs. [F₃CCO₂CH₃] added to the flow, it was obvious that the amount of F₃C⁻ went through an early maximum and then decreased to give the above final results. This was separately shown to be the result of a fast reaction of F_3C^- with $F_3CCO_2CH_3$ [$k = (1.1 \pm 0.1) \times 10^{-9}$ cm³ molecule⁻¹ s⁻¹], 9b giving a 2:1 ratio of $F_3CCO_2^-$ (m/z 113) and the addition adduct $(F_3C)_2C(-O^-)OCH_3$ (m/z 113)197). These results lead to the reaction channels formulated in reactions 4-9. That the amount of adduct m/z 197 was only 13%

of the signal for m/z 113 from the reaction of $C_3H_5^-$ with $F_3C_5^ CO_2CH_3$ while it was 50% of m/z 113 in the reaction of F_3C^- with F₃CCO₂CH₃ is consistent with stepwise formation of excited F₃CCO₂⁻ followed by competitive decomposition (yielding F₃C and CO₂) and third-body (He) collisional stabilization.

The reaction of $C_3H_5^-$ with $F_3CCO_2C_2H_5$ was also fast $[k = (1.5 \pm 0.1) \times 10^{-9} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}]$. The final ion products were $F_3C^-(m/z 69)$, $H_2C=CHCH=C(-O^-)CF_3(m/z 137)$, $F_3CCO_2^-$ (m/z 113), and (CF₃)₂C(-O⁻)OC₂H₅ (m/z 211) in a ratio of 32:27:24:17, respectively, under the same conditions given above for the reaction of the methyl ester. (Note the differences in this ratio and that of the methyl ester and the absence of H_2C =CHCH= $C(-O^-)OC_2H_5$. 10) As in the case of the reaction of the methyl ester, the ion signal for $F_3C^-(m/z 69)$ was observed to go through an early maximum. The followup reaction of F₃C⁻ with $F_3CCO_2C_2H_5$ was separately determined, $k = (9.1 \pm 0.3) \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹, ^{9b} and gave an inverted ratio of 0.1 for the products $F_3CCO_2^-$ (m/z 113) and the adduct $(F_3C)_2C(-O^-)OC_2H_5$ (m/z 211). While reactions 4 and 6-9 ($R=C_2H_5$) apply to formation of these products, we must also consider the E2 elimination mechanism (reaction 10) for the formation of F₃CCO₂ from this ethyl ester.

F₃CCO₂

⁽¹⁾ Comisarow (Comisarow, M. Can. J. Chem. 1977, 55, 171) was not explicit in the mechanism by which CF₃CO₂—was formed.
(2) Olmstead, W. N.; Brauman, J. I. J. Am. Chem. Soc. 1977, 99, 4219.
(3) McDonald, R. N.; Chowdhury, A. K.; Setser, D. W. J. Am. Chem. Soc. 1980, 102, 6491.

⁽⁴⁾ Formation of small amounts of F_3C^- was observed early in the reaction $H_2N^- + F_3CCO_2H \rightarrow F_3CCO_2^- + NH_3$, $\Delta H = -80$ kcal mol⁻¹, but not in the reaction $F^- + F_3CCO_2CH_3 \rightarrow F_3CCO_2^- + FCH_3$, $\Delta H = -43$ kcal mol⁻¹.

reaction $F^+ + F_3CCO_2CH_3 \rightarrow F_3CCO_2^- + FCH_3$, $\Delta H = -43$ kcal mol⁻¹. (5) Allyl anion was produced in the upstream end of the flow tube by the reactions (a) $H_2N^- + CH_3CH = CH_2$ and (b) $F^- + (H_3C)_3SiCH_2CH = CH_2$ (DePuy, C. H.; Bierbaum, V. M.; Flipping, L. A.; Grabowski, J. J.; King, G. K.; Schmitt, R. J.; Sullivan, S. A. J. Am. Chem. Soc. 1980, 102, 5012. (6) $C_3H_5^- + CH_3B^- \rightarrow BF^- + 1$ -butene, $k = (7.7 \pm 0.3) \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹; $C_3H_5^- + CH_3Cl \rightarrow Cl^- + 1$ -butene, $k = (2.9 \pm 0.1) \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹.

⁽⁷⁾ The ΔH°_{acid} 's of the vinylogues $F_3CC(=O)CH_2CH=CH_2$ (≤ 340 kcal mol⁻¹) and $H_2C=CHCH_2CO_2CH_3$ (≤ 361 kcal mol⁻¹) are estimated to be ≥ 10 kcal mol⁻¹ lower than those of $F_3CC(=O)CH_3$ (350 kcal mol⁻¹) and $H_3CC-O_2CH_3$ (371 kcal mol⁻¹), 8 respectively; $\Delta H^{\circ}_{acid}(F_3CH) = 376$ kcal mol⁻¹ and $\Delta H^{\circ}_{acid}(H_3COH) = 379$ kcal mol⁻¹. 8 Decomposition of adduct 1 is favored by ≥ 15 kcal mol⁻¹ to yield $H_2C=CHCH=C(=O^-)OR + HCF_3$ rather than

⁽⁸⁾ Bartness, J. E.; McIver, R. T. "Gas Phase Ion Chemistry"; Bowers, M. T., Ed., Academic Press: New York, 1979; Vol. 2, Chapter 11.

(9) Collision limit rate constants are calculated by the average dipole

⁽⁹⁾ Collision limit rate constants are calculated by the average dipole orientation theory (Su, T.; Bowers, M. T. J. Chem. Phys. 1973, 58, 3027. Int. J. Mass. Spectrom. Ion Phys. 1973, 12, 374): (a) $k_{ADO} = 2.1 \times 10^{-9} \text{ cm}^3$ molecule⁻¹ s⁻¹ for the reactions of $C_3H_5^-$ with these three esters. (b) $k_{ADO} = 1.8 \times 10^{-9} \text{ cm}^3$ molecule⁻¹ s⁻¹ for the reactions of F_3C^- with either ester. (10) Although both $F_3CCO_2^-$ and $H_2C=CH=CH=C(O^-)OC_2H_5$ are m/z 113, the (M + 1) (m/z 114) ion clearly shows that m/z 113 is only $F_3CCO_2^-$

To determine if the exoergicity of reaction 10 would be sufficient to effect the secondary decomposition of $F_3CCO_2^- \rightarrow F_3C^- + CO_2$ observed in the reaction of the ethyl ester, we examined the reaction of C₃H₅ with the tert-butyl ester, F₃CCO₂C(CH₃)₃. Here, again, a fast pseudo-first-order decay of C₃H₅ was observed $(k = (1.3 \pm 0.1) \times 10^{-9} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})^{9a}$ along with the formation of two product ions, $F_3CCO_2^-$ (m/z 113; 18%) and H_2C =CHCH= $C(-O^-)CF_3$ (m/z 137; 82%). Significantly, no ion signals due to F₃C⁻ or its addition adduct with the ester, (F₃C)₂C(-O⁻)OC(CH₃)₃, 11 were observed. These data and the striking similarities between the reactions in (10) and (11) lead to the conclusion that the E2 elimination reaction of C₃H₅ with F₃CCO₂C₂H₅ would not yield F₃CCO₂ with sufficient internal energy to allow it to decompose to produce F₃C⁻. Therefore, the major reaction channel in the reaction of $C_3H_5^-$ with F_3CCO_2R $(R = CH_3 \text{ and } C_2H_5)$ involves nucleophilic displacement of C_α of R, but carbonyl addition by the nucleophile is a competing

The above discussion has assumed that F₃C⁻ will not be formed by decomposition of the carbonyl addition adducts 1. Adduct 1 will be produced energetically "hot" and fragment before they are "cooled off" by collisions with the helium buffer gas. Considering the fragmentation channel where the F₃C-C bond undergoes heterolysis, a long-lived, ion-neutral collision complex 2 would result.¹² While both exit channels (12) and (13) are overall exoergic (see reactions 5 and 6), proton transfer via exit channel

$$1* - \begin{bmatrix} H_2C = CHCH_2CO_2R \\ -CF_3 \\ 2 \end{bmatrix} - \begin{bmatrix} F_3C^- + H_3C = CHCH_2CO_2R \\ -CHCH_2CO_2R \\ -CHCH$$

(13) is favored by ≥15 kcal mol⁻¹.⁷ This thermochemical argument for fragmentation of 1 by reaction 13 is supported by the observation that F₃C⁻ was not formed in the reaction of C₃H₅⁻ with F₃CCO₂C(CH₃)₃ where carbonyl addition followed by fragmentation of the adduct 1 was the principal reaction channel.

Therefore, we consider the source of the ion F₃C⁻ in these reactions to be excited F₃CCO₂^{-.13} Since the decomposition of $F_3CCO_2^- \rightarrow F_3C^- + CO_2$ (reaction 7) is strongly endoergic (38.8) kcal mol-1), we can expect it to occur only from the more exoergic reactions leading to excited F₃CCO₂⁻ (reaction 4).⁴ Such unimolecular decomposition will compete with stabilization by collisions with the buffer gas $(k_s[He])$.

The relatively low exoergicity (-57 kcal mol⁻¹) of the $S_N 2$ channel in the reaction of H₃CO⁻ with F₃CCO₂CH₃ (reaction 1) also suggests that F₃C⁻ will not be formed by this channel. Thus, the observation of F₃C⁻ as a product of this reaction is believed to arise by the carbonyl addition-anionic fragmentation shown in reaction 2.

Acknowledgment. We gratefully acknowledge support of this research from the U.S. Army Research Office and the National Science Foundation (equipment grant) and encouragement from Professor D. W. Setser. We thank Tomas Bratt, a summer exchange student from Lunds Institute of Technology, Lund,

Sweden, for synthesis of F₃CCO₂C(CH₃)₃.

Registry No. H₃CO⁻, 8315-60-4; C₃H₅⁻, 1724-46-5; F₃CCO₂CH₃, 431-47-0; F₃CCO₂-, 14477-72-6; F₃C-, 54128-17-5; H₂C=CHCH= $C(-O^{-})OCH_{2}$, 80462-73-3; $H_{2}C=CHCH=C(-O^{-})CF_{3}$, 80462-74-4; $(F_3C)_2C(-O^-)OCH_3$, 80462-75-5; $F_3CCO_2C_2H_5$, 383-63-1; $(CF_3)_2C(-O^-)OCH_3$ $O^{-})OC_{2}H_{5}$, 80462-76-6; $F_{3}CCO_{2}C(CH_{3})_{3}$, 400-52-2.

A Periodonium Trifluoromethanesulfonate. An Isolable 10-I-4 Organoiodine Species

D. B. Dess and J. C. Martin*

Roger Adams Laboratory, Department of Chemistry University of Illinois, Urbana, Illinois 61801 Received November 9, 1981

We report the isolation and characterization of a stable pseudotrigonal-bipyramidal (TBP) 10-I-41 species with organic ligands, ^{2a,b} periodonium trifluoromethanesulfonate (triflate) salt 1.3 Just as the familiar iodonium ion (an 8-I-2 species) can be viewed as having been derived from an iodinane (a 10-I-3 species) by heterolysis of a bond joining one of the three ligands to iodine, a periodonium ion (a 10-I-4 species) can be viewed as having been derived in this same way from a periodinane⁴ (a 12-I-5 species).

$$R_n I X_{5-n} \rightarrow R_n I^+ X_{4-n} + X^-$$

The periodonium ion of 1 is isovalent and isostructural with sulfurane 2a⁵ and the phosphoranide anion of 3a.⁶ Earlier studies

of 2a,b^{5,7} and 3a,b^{6,8} provided evidence for the efficacy of the bidentate ligand⁵ common to all five structures in stabilizing pseudo-TBP 10-X-4 species which contain hypervalent⁹ nonmetals. Sulfuranes 2a,b, in particular, are very stable compounds. In sharp contrast to their acyclic analogues, 10 they are inert toward aqueous acid.7,11

The pictured structure for the periodonium cation 1 is consistent

C, H, F, I, S; osmometric M, (CH₃CN) 420.

(A) Amey, R. L.; Martin, J. C. J. Am. Chem. Soc. 1979, 101, 5294.
(B) Perozzi, E. F.; Michalak, R. S.; Figuly, G. D.; Stevenson, W. H., III;
(B) Ross, M. R.; Martin, J. C. J. Org. Chem. 1981, 46, 1049.
(C) Ross, M. R. Ph.D. Thesis, University of Illinois, 1981.
(D) Martin, J. C.; Perozzi, E. F. J. Am. Chem. Soc. 1974, 96, 3155.
(E) (a) Granoth, I.; Martin, J. C. J. Am. Chem. Soc. 1979, 96, 4618.
(E) Constitution of Child 1979.

Granoth, I.; Martin, J. C. Ibid. 1979, 101, 4623.

(9) Musher, J. I. Angew. Chem., Int. Ed. Engl. 1969, 8, 54.
(10) Arhart, R. J.; Martin, J. C. J. Am. Chem. Soc. 1972, 94, 4997.
(11) Michalak, R. S.; Martin, J. C., to be published.

⁽¹¹⁾ Formation of the adduct $(F_3C)_2C(-O^-)OC(CH_3)_3$ is the major reaction channel in the reaction $F_3C^-+F_3CCO_2C(CH_3)_3$. F_3C^- has a considerably lower proton affinity $(PA = 375.6 \pm 2 \text{ keal mole}^{-1})^8$ compared to that of $C_3H_5^-$ ($PA = 390.8 \pm 2 \text{ keal mole}^{-1})^8$ (12) Farneth, W. E.; Brauman, J. I., J. Am. Chem. Soc., 1976, 98, 7891. (13) The decomposition of $F_3CCO_2^-$ has direct solution analogies in the thermal decompositions of $X_3CCO_2^-M^+$ salts and the base cleavages of esters X_3CCO_2R (where R has C_6^-H bonds for elimination), producing X_3C^- as sources for $X_2C + X^-$. See: Kirmse, W., "Carbene Chemistry," 2nd. Ed., Academic Press, New York, 1971; pp 137-140.

⁽¹⁾ Perkins, C. W.; Martin, J. C.; Arduengo, A. J.; Lau, W.; Alegria, A.; Kochi, J. K. J. Am. Chem. Soc. 1980, 102, 7753.

^{(2) (}a) The salt IF₄+SbF₆- has been made. It is extremely reactive, even toward compounds such as carbon tetrachloride. Its X-ray crystallographic toward compounds such as carbon tetrachloride. Its X-ray crystallographic structure shows a distorted TBP geometry for the IF₄⁺ cation, with some evidence of bridging to two of the fluorine atoms of the hexafluoroantimonate counteranion. See: Woolf, A. A. J. Am. Chem. Soc. 1950, 72, 3678. Giber, D. D. Nucl. Sci. Abstr. 1973, 28, 26892. (b) The periodonium salt C₆F₅IF₃+SbF₆⁻ has been observed by ¹⁹F NMR spectroscopy in solution in SbF₅ and SO₂Cl₂ at temperatures below -10 °C. The salt decomposes after a few minutes at 40 °C. See: Bardin, V. V.; Furin, G. G.; Yakobson, G. G. Zh. Org. Khim. 1980, 16, 1256.

(3) Mp 288-291 °C; ¹H NMR (CD₃CN) δ 8.031-8.253 (8 H, complex multiplet); ¹⁹F NMR (CD₃CN) δ -72.10 (6 F, q, J_{FF} = 9 Hz), -75.05 (6 F, q, J_{FF} = 9 Hz), -75.04 (3 F, s, CF₃ on CF₃SO₃); mass spectrum (field desorption) m/e 760 (M⁺·), 611 (M⁺· - CF₃SO₃). Anal. (C₁₉H₈F₁₅IO₅S) C, H, F, I, S; osmometric M, (CH₃CN) 420.