

Available online at www.sciencedirect.com

Mendeleev Commun., 2009, **19**, 217–219

Mendeleev Communications

Synthesis of 1,3- and 1,4-bis(3-nitrofurazan-4-yl)benzenes and isomeric 1,3- and 1,4-bis[3(4)-nitrofuroxan-4(3)-yl]benzenes

Igor V. Ovchinnikov, Alexey O. Finogenov, Margarita A. Epishina, Yuri A. Strelenko and Nina N. Makhova*

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation. Fax: +7 499 135 5328; e-mail: mnn@ioc.ac.ru

DOI: 10.1016/j.mencom.2009.07.015

The 1,3- and 1,4-bis(3-nitrofurazan-4-yl)benzenes have been synthesized by dehydration of 1,3- and 1,4-bis(2-aminoglyoximo-1-yl)benzenes followed by oxidation of amino groups. The 1,3- and 1,4-bis(3-nitrofuroxan-4-yl)benzenes have been prepared by nitrozylation of tetrapotassium salts of 1,3- and 1,4-bis(2,2-dinitro-1-oximinoethyl)benzenes and thermally isomerized to 1,3- and 1,4-bis(4-nitrofuroxan-3-yl)benzenes.

There are two main approaches to the preparation of arylnitrofuroxans, namely, oxidation of 4-amino-3-arylfuroxans 1 into 3-aryl-4-nitrofuroxans¹ 2 and nitrosylation of 1-aryl-2,2-dinitro-1-oximinoethane dipotassium salts 3 with the formation of 4-aryl-3-nitrofuroxans² 4. The latter can be thermally isomerized to 3-aryl-4-nitofuroxans² 2 being more preferential in terms of thermodynamics. Initial 4-amino-3-arylfuroxans 1 are synthesized by thermal isomerization of 3-amino-4-arylfuroxans 5 formed, in turn, through oxidation of 1-amino-2-arylglyoximes *amfi*-form 6.^{3,4} Dehydration of compounds 6 (*amfi*- and *anti*- or *syn*-forms) under the action of inorganic bases is practiced to prepare 3-amino-4-arylfurazans⁵ 7, which can be oxidized into 4-aryl-3-nitrofurazans⁵ 8 (Scheme 1).

In this paper, all these approaches were investigated to prepare isomeric 1,3- and 1,4-bis[3(4)-nitrofuroxan-4(3)-yl]benzenes and their nitrofurazanyl analogues – potential highenergy compounds. Benzene-1,3(9a)- and 1,4(9b)-dicarboxaldehydes, as well as 5-methylbenzene-1,3-dicarboxaldehyde (9c), were selected as initial compounds. Using known methods,^{6,7} we transformed dicarboxaldehydes 9a–c to corresponding oximes 10a–c under the action of hydroxylamine, and compounds 10a–c were treated with gaseous Cl₂ in aqueous HCl to obtain 1,3- and 1,4-bis(hydroximoyl) chlorides 11a–c. To synthesize 1,3- and 1,4-bis(2-aminoglyoximo-1-yl)benzenes 12a,b,

Scheme 2 Reagents and conditions: i, NH₂OH·HCl (2 mol), NaOH, MeOH, 40–50 °C, 30 min; ii, Cl₂ (2 mol), conc. HCl/MeOH, 0–10 °C, 1 h; iii, KCN (2 mol), H₂O, 20 °C, 1 h; iv, NH₄OH·HCl (2 mol)/NaHCO₃ (2 mol), H₂O, 100 °C, 4 h.

precursors of 1,3- and 1,4-bis[aminofuroxanyl(furazanyl)]benzenes, compounds **11a,b** were first transformed to 1,3- and 1,4-bis(cyanooximinomethyl) derivatives **13a,b** and then treated with hydroxylamine (Scheme 2).[†] It could be expected that compounds **12a,b** will mainly have *amfi*-configuration because the similar transformation of arylhydroximoyl chlorides results in a mixture of *amfi*- and *syn*-isomers of 1-amino-2-arylglyoximes with preferential formation of *amfi*-form.³

The most preferable oxidizers for oxidizing *amfi*-form of 1-amino-2-arylglyoximes **6** to 3-amino-4-arylfuroxans **5** are Br₂ in hydrochloric acid³ or K₃Fe(CN)₆ in the presence of bases (ammonia or aqueous NaOH solution).^{4(a),(b)} Other oxidizers either badly oxidize (Cl₂, CrO₃, KMnO₄) or do not oxidize (N₂O₄, NaOCl, HNO₃) 1-amino-2-arylglyoximes into 3-amino-4-arylfuroxans.^{8(a),(b)} Unfortunately, all our attempts to oxidize 1,3- and 1,4-bis(2-aminoglyoximo-1-yl)benzenes **12a,b** to 1,3- and 1,4-bis(3-aminofuroxan-4-yl)benzenes **14a,b** with Br₂ in hydrochloric acid resulted in a complex mixture of the compounds (TLC data), in which the aminofuroxan ring was absent [signals of C(3) furoxan carbon atoms at 108–110 ppm were absent from the ¹³C NMR spectra]. A major part of initial aminoglyoximes **12a,b** decomposed when using K₃Fe(CN)₆ in the presence of different bases. It is likely that compounds

12a,b, which were prepared according to Scheme 2, do not occur in the *amfi*-configuration. Therefore, they cannot be oxidized to aminofuroxans.

More successful results were obtained in the synthesis of nitrofurazanyl derivatives from bis(aminoglyoximes) **12a,b.** These compounds were dehydrated to 1,3- and 1,4-bis(3-amino-furazan-4-yl)benzenes **15a,b** by their refluxing in aqueous NaOH solution and the amino groups in compounds **15a,b** were then oxidized to the nitro groups with H_2O_2 in CF₃COOH. Target 1,3- and 1,4-bis(3-nitrofurazan-4-yl)benzenes **16a,b** were synthesized in 56 and 95% yields, respectively (Scheme 3).[‡]

[†] All new compounds exhibited satisfactory elemental analyses. IR spectra were measured on a UR-20 spectrometer; ¹H and ¹³C NMR spectra were recorded on Bruker AC200-31 (200 MHz for ¹H and 50.3 MHz for ¹³C) and Bruker AM300 (300 MHz for ¹H and 75.5 MHz for ¹³C) spectrometers (CDCl₃ was used as the internal standard). ¹³C NMR spectra were recorded under proton decoupling conditions. ¹⁴N NMR spectra were recorded on a Bruker AM300 (22 MHz) spectrometer (MeNO₂ was used as the internal standard). Mass spectra were measured on a Finnigan MAT INCOS-50 instrument. TLC was carried out on Silufol UV-254 plates. Melting points were measured on a Gallenkamp instrument (Sanyo).

1,3-Bis(2-aminoglyoximo-1-yl)benzene **12a**: yield 69%, mp 180–182 °C, *R*_f 0.31 (EtOAc). ¹H NMR ([²H₆]DMSO) δ : 5.7 (br. s, 4H, NH₂), 7.35 (t, 1H, C⁵H in Ar, ³J 7.5 Hz), 7.6 (d, 2H, C⁴H, C⁶H in Ar, ³J 7.5 Hz), 7.9 (s, 1H, C²H in Ar), 9.45 (br. s, 2H, OH), 11.6 (br. s, 2H, OH). IR (ν /cm⁻¹): 3464 (NH₂), 3350 (OH), 2850 (CH), 2360, 1652 (C=N), 1484, 1376, 1280, 980, 872, 812, 700.

1,4-Bis(2-aminoglyoximo-1-yl)benzene **12b**: yield 31%, mp 214–215 °C, $R_{\rm f}$ 0.16 (EtOAc). ¹H NMR ([²H_6]DMSO) δ : 5.76 (br. s, 4H, NH₂), 7.56 (s, 4H in Ar), 9.48 (br. s, 2H, OH), 11.70 (br. s, 2H, OH). IR ($\nu/\rm{cm^{-1}}$): 3472 (NH₂), 3400 (OH), 3020 (CH), 2980 (CH), 1684 (C=N), 1584, 1416, 1372, 1260, 1140, 1060, 1026, 960, 844, 828.

1,3-Bis(cyanooximinomethyl)benzene **13a**: yield 79%, mp 195–196 °C, *R*_f 0.38 (CHCl₃:EtOAc, 5:1). ¹H NMR ([²H₆]DMSO) δ : 7.65 (t, 1H, C⁵H in Ar, ³J 5.9 Hz), 7.85 (d, 2H, C⁴H, C⁶H in Ar, ³J 5.9 Hz), 8.05 (s, 1H, C²H in Ar), 14.00 (s, 2H, OH). IR (ν /cm⁻¹): 3384 (OH), 3236 (OH), 3028 (CH), 2988 (CH), 2872 (CH), 2236 (CN), 1612 (C=N), 1440, 1380, 1328, 1256, 1112, 1064, 1016, 896, 864, 800, 620.

1,4-Bis(cyanooximinomethyl)benzene **13b**: yield 90%, mp 192–194 °C, *R*_f 0.55 (CHCl₃:EtOAc, 5:1). ¹H NMR ([²H₆]DMSO) δ : 7.88 (s, 4H in Ar), 14.1 (br. s, 2H, OH). IR (ν /cm⁻¹): 3528 (OH), 3488 (OH), 3008 (CH), 2984 (CH), 2384, 2232 (CN), 1624 (C=N), 1532, 1452, 1304, 1288, 1224, 1072, 1044, 980, 848, 832.

[‡] *1,3-Bis(3-aminofurazan-4-yl)benzene* **15a**: yield 39%, mp 220–221 °C, *R*_f 0.42 (CHCl₃:EtOAc, 1:1). ¹H NMR ([²H₆]DMSO) δ : 6.35 (br. s, 4H, NH₂), 7.7 (t, 1H, C⁵H in Ar, ³*J* 8.6 Hz), 7.9 (d, 2H, C⁴H, C⁶H in Ar, ³*J* 8.6 Hz), 8.1 (s, 1H, C²H in Ar). ¹³C NMR ([²H₆]DMSO) δ : 126.4 (C¹, C³ in Ar), 126.8, 129.8, 130.1 (C², C⁴, C⁵ and C⁶ in Ar), 146.5, 155.4 (C³, C⁴ in furazan ring). IR (ν /cm⁻¹): 3472 (NH₂), 3244 (CH), 2852 (CH), 2368 (CH), 1632 (C=N), 1572, 1516, 1396, 1280, 980, 872, 812, 700. MS, *m/z*: 244 (M⁺).

1,4-Bis(3-aminofurazan-4-yl)benzene **15**b: yield 68%, mp 205–207 °C, $R_{\rm f}$ 0.32 (CHCl₃:EtOAc, 1:1). ¹H NMR ([²H₆]DMSO) δ : 6.30 (br. s, 4H, NH₂), 7.90 (s, 4H, CH in Ar). ¹³C NMR ([²H₆]DMSO) δ : 127.15 (C¹, C⁴ in Ar), 128.30 (C², C³ in Ar), 146.26, 155.24 (C³, C⁴ in furazan ring). IR (ν /cm⁻¹): 3432 (NH₂), 3344 (NH₂), 3204, 3201 (CH), 2352 (CH), 1644 (C=N), 1552, 1480, 1388, 1280, 1068, 984, 844, 736. MS, *m/z*: 244 (M⁺).

1,3-Bis(3-nitrofurazan-4-yl)benzene **16a**: yield 56%, mp 81–83 °C, $R_{\rm f}$ 0.26 (CCl₄:CHCl₃, 1:1). ¹H NMR ([²H₆]acetone) δ : 7.93 (t, 1H, C⁵H in Ar, ³J 7.9 Hz), 8.22 (d, 2H, C⁴H, C⁶H in Ar, ³J 7.9 Hz), 8.37 (s, 1H, C²H in Ar). ¹³C NMR (CDCl₃) δ : 128.71 (C¹, C³ in Ar), 129.43, 131.01 (C², C⁵ in Ar), 132.83 (C⁴, C⁶ in Ar), 149.81 (C⁴ in furazan ring), 159.01 (C³ in furazan ring). ¹⁴N NMR ([²H₆]acetone) δ : -35.07 (s, NO₂). IR (ν /cm⁻¹): 2850 (CH), 2360 (CH), 1652 (C=N), 1540 (NO₂), 1484, 1344 (NO₂), 1280, 980, 872, 812, 700.

1,4-Bis(3-nitrofurazan-4-yl)benzene **16b**: yield 95%, mp 125–127 °C, $R_{\rm f}$ 0.28 (CCl₄:CHCl₃, 1:1). ¹H NMR ([²H₆]acetone) δ : 8.12 (s, 4H, Ar). ¹³C NMR ([²H₆]acetone) δ : 125.99 (C¹, C⁴ in Ar), 130.08 (C², C³ in Ar), 149.84 (C⁴ in furazan ring), 159.79 (C³ in furazan ring). ¹⁴N NMR ([²H₆]acetone) δ : -35.11 (s, NO₂). IR (ν /cm⁻¹): 3100 (CH), 2850 (CH), 1572, 1544 (NO₂), 1372 (NO₂), 1224, 1060, 1000, 912, 840, 824, 764.

Scheme 3 Reagents and conditions: i, $K_3Fe(CN)_6$ (4 mol), 2.4% aqueous NH₃, H₂O, 5 °C, 20 min; ii, 2 N NaOH, 100 °C, 1.5 h; iii, 30% H₂O₂ (100 mol)/CF₃COOH (25 mol), 50 °C, 2 h.

To obtain 1,3- and 1,4-bis(nitrofuroxanyl)benzenes, the reaction of all three bis(hydroximoyl) chlorides **11a–c** with an excess of dinitromethane sodium salts at low temperature in DMF was examined. Sodium salts of 1,3- and 1,4-bis(2,2-dinitro-1-oximinoethyl)benzenes (**17a–c**) were obtained and purified from dinitromethane by extraction with CHCl₃. The salts were acidified with H_2SO_4 to 1,3- and 1,4-bis(2,2-dinitro-1-oximinoethyl)benzenes **18a–c** and transformed to tetrapotassium salts of 1,3- and 1,4-bis(2,2-dinitro-1-oximinoethyl)benzenes (**19a–c**) by treatment with AcOK in MeOH. Nitrosylation of salts **19a–c** with NaNO₂ in AcOH afforded 1,3- and 1,4-bis(3-nitrofuroxan-4-yl)benzenes **20a–c**. The reaction evidently runs through intermediates **21a–c**. Then, 3-nitrofuroxan derivatives **20a–c** were thermally isomerized to 1,3- and 1,4-bis(4-nitrofuroxan-3-yl)-benzenes **22a–c** in high yields by refluxing in toluene (Scheme 4).§

Scheme 4 Reagents and conditions: i, NaCH(NO₂)₂ (4 mol), DMF, -20 °C, 48 h; ii, CHCl₃; iii, 20% H₂SO₄; iv, AcOK (10 mol), MeOH, 5 °C, 1 h; v, NaNO₂ (5 mol), AcONa·3H₂O, AcOH, 20–30 °C, 30 min; vi, toluene, 2 h.

To summarize, 1,3- and 1,4-bis(3-nitrofurazan-4-yl)benzenes and isomeric 1,3- and 1,4-bis[3(4)-nitrofuroxan-4(3)yl]benzenes were for the first time synthesized in this work. Their structures were established by spectral (¹H, ¹³C, ¹⁴N NMR, IR and mass

[§] 1,3-Bis(3-nitrofuroxan-4-yl)benzene **20a**: yield 56%, mp 139.5–140.5 °C, $R_{\rm f}$ 0.29 (CCl₄:EtOAc, 1:1). ¹H NMR ([²H₆]acetone) δ: 7.92 (t, 1H, C⁵H in Ar, ³J 7.9 Hz), 8.15 (d, 2H, C⁴H, C⁶H in Ar, ³J 7.9 Hz), 8.28 (s, 1H, C²H in Ar). ¹³C NMR ([²H₆]acetone) δ: 125.42 (C¹, C³ in Ar), 127.33 (C³ in furoxan ring), 129.02, 129.82 (C², C⁵ in Ar), 132.22 (C⁴, C⁶ in Ar), 151.35 (C⁴ in furoxan ring). ¹⁴N NMR (CDCl₃) δ: –38.35 (s, NO₂). IR (ν /cm⁻¹): 3096 (CH), 1632 (furoxan ring), 1544 (NO₂), 1468, 1448, 1392 (NO₂), 1264, 1220, 1172, 1040, 1000, 984, 856, 808, 756, 720.

1,4-Bis(3 -nitrofuroxan-4-yl)benzene **20b**: yield 45%, mp 180–203 °C, $R_{\rm f}$ 0.31 (CCl₄:EtOAc, 1:1). ¹H NMR ([²H₆]acetone) δ : 8.13 (s, 4H in Ar). ¹³C NMR (CDCl₃) δ : 128.17 (C³ in furoxan ring), 129.75 (C¹, C⁴ in Ar), 129.78 (C², C³, C⁵ and C⁶ in Ar), 151.84 (C⁴ in furoxan ring). ¹⁴N NMR ([²H₆]acetone) δ : -38.30 (s, NO₂). IR (ν /cm⁻¹): 3112 (CH), 2800 (CH), 2332, 1632 (furoxan ring), 1548 (NO₂), 1436, 1340 (NO₂), 1200, 1012, 984, 844, 792, 712.

1,3-Bis(*3-nitrofuroxan-4-yl*)-5-*methylbenzene* **20**c: yield 42%, mp 122–124 °C, $R_{\rm f}$ 0.20 (CCl₄:CHCl₃, 1:1). ¹H NMR ([²H₆]acetone) δ: 2.60 (s, 3H, Me), 7.97 (s, 2H in Ar), 8.08 (s, 1H in Ar). ¹³C NMR (CDCl₃) δ: 20.33 (Me), 125.73 (C³ in furoxan ring), 127.41 (C⁵ in Ar), 132.93 (C⁴, C⁶ in Ar), 139.72 (C² in Ar), 151.78 (C⁴ in furoxan ring). ¹⁴N NMR ([²H₆]acetone) δ: -38.35 (s, NO₂). IR (ν /cm⁻¹): 2932 (CH), 2876 (CH), 1648 (furoxan ring), 1628 (Ar), 1536 (NO₂), 1468, 1412, 1348 (NO₂), 1260, 1172, 1076, 880, 844, 776.

1,3-Bis(4-*nitrofuroxan-3-yl*)*benzene* **22a**: yield 91%, mp 142–144 °C, *R*_f 0.21 (CCl₄:CHCl₃, 1:1). ¹H NMR ([²H₆]acetone) δ : 7.92 (t, 1H, C⁵H in Ar, ³J 7.9 Hz), 8.09 (d, 2H, C⁴H, C⁶H in Ar, ³J 7.9 Hz), 8.22 (s, 1H, C²H in Ar). ¹³C NMR ([²H₆]acetone) δ : 110.00 (C³ in furoxan ring), 121.90 (C¹, C³ in Ar), 129.53, 131.04 (C², C⁵ in Ar), 132.84 (C⁴, C⁶ in Ar), 158.87 (C⁴ in furoxan ring). ¹⁴N NMR (CDCl₃) δ : –34.88 (s, NO₂). IR (ν /cm⁻¹): 1632 (furoxan ring), 1568 (NO₂), 1512, 1484, 1372 (NO₂), 1296, 1268, 1144, 1116, 1072, 1028, 1000, 988, 896, 828, 796, 792, 704.

1,4-Bis(4-*nitrofuroxan-3-yl)benzene* **22b**: yield 90%, mp 212–214 °C, *R*_f 0.20 (CCl₄:CHCl₃, 1:1). ¹H NMR ([²H₆]acetone) δ : 8.09 (s, 4H in Ar). ¹³C NMR (CDCl₃) δ : 110.08 (C³ in furoxan ring), 123.91 (C¹, C⁴ in Ar), 130.23 (C², C³, C⁵ and C⁶ in Ar), 158.85 (C⁴ in furoxan ring). ¹⁴N NMR ([²H₆]acetone) δ : –34.91 (s, NO₂). IR (ν /cm⁻¹): 1624 (furoxan ring), 1612 (Ar), 1536 (NO₂), 1488, 1408, 1364 (NO₂), 1292, 1268, 1132, 1076, 992, 840, 792.

1,3-Bis(4-nitrofuroxan-3-yl)-5-methylbenzene **22c**: yield 70%, mp 138–141 °C, R_f 0.20 (CCl₄:CHCl₃, 1:1). ¹H NMR ([²H₆]acetone) δ : 2.56 (s, 3H, Me), 7.88 (s, 2H in Ar), 7.99 (s, 1H in Ar). ¹³C NMR (CDCl₃) δ : 20.33 (Me), 109.95 (C³ in furoxan ring), 121.81 (C¹, C³ in Ar), 128.19 (C² in Ar), 133.10 (C⁴, C⁶ in Ar), 139.80 (C⁵ in Ar), 158.85 (C⁴ in furoxan ring). ¹⁴N NMR ([²H₆]acetone) δ : –35.07 (s, NO₂). IR (ν /cm⁻¹): 2920 (CH), 1624 (furoxan ring), 1560 (NO₂), 1504, 1356 (NO₂), 1272, 1136, 1076, 1016, 872, 832, 776, 704.

spectra) and elemental analysis data. It was shown that synthesized 1,3- and 1,4-bis(aminoglyoximoyl)benzenes are not evidently in *amfi*-configuration that hindered their oxidation to corresponding 1,3- and 1,4-bis(3-aminofuroxan-4-yl)benzenes.

This study was partially supported by the Presidium of the Russian Academy of Sciences, the programme 'Development of Methods for Synthesizing Chemical Compounds and Creating New Materials' (2006–2008).

References

- (a) N. N. Makhova, A. N. Blinnikov and L. I. Khmel'nitskii, *Mendeleev Commun.*, 1995, 56; (b) I. V. Ovchinnikov, A. N. Blinnikov, N. N. Makhova and L. I. Khmel'nitskii, *Mendeleev Commun.*, 1995, 58.
- 2 V. G. Dubonos, I. V. Ovchinnikov, N. N. Makhova and L. I. Khmel'nitskii, *Mendeleev Commun.*, 1992, 120.
- 3 A. R. Gagneux and R. Meier, Helv. Chim. Acta, 1970, 53, 1883.
- 4 (a) C. Lehmann, A. Gagneux and E. Renk, Switzerland Patent, 496721, 1970 (Chem. Abstr., 1971, 75, 20406p); (b) N. N. Makhova and T. I. Godovikova, Ross. Khim. Zh. (Zh. Ross. Khim. Ob-va im. D. I. Mendeleeva), 1997, 41 (2), 54 [Mendeleev Chem. J. (Engl. Transl.), 1997, 41, 81].
- 5 A. B. Sheremetev, N. N. Makhova and W. Friedrichsen, *Adv. Heterocycl. Chem.*, 2001, **78**, 66.
- 6 L. A. Errede and J. M. Hoyt, J. Am. Chem. Soc., 1960, 82, 436.
- 7 B. H. Kim and E. J. Jeong, Synthesis, 2001, 14, 2119.
- 8 (a) G. Ponzio and C. Cerrina, *Gazz. Chim. Ital.*, 1928, **58**, 26; (b) A. Vianello, *Gazz. Chim. Ital.*, 1928, **58**, 328.

Received: 5th February 2009; Com. 09/3281