Total synthesis of PDE-II by copper-mediated double amination[†]

Kentaro Okano, Nakako Mitsuhashi and Hidetoshi Tokuyama*

Received (in Cambridge, UK) 22nd December 2009, Accepted 4th February 2010 First published as an Advance Article on the web 23rd February 2010 DOI: 10.1039/b926965g

A concise total synthesis of PDE-II featuring copper-mediated double aryl amination with the combination of CuI, CsOAc, and Cs_2CO_3 is described. The highly substituted pyrroloindole skeleton was constructed by a one-pot five-step sequence including double aryl amination, β -elimination, deprotection of a Cbz group, and removal of an Ns group followed by rearomatization.

PDE-I (1) and PDE-II (2) (Fig. 1), isolated from *Streptomyces* MD769-C6 by Umezawa and co-workers, exhibit inhibitory activity towards cyclic adenosine-3',5'-monophosphate phosphodiesterase.¹ The structures were initially identified by NMR spectroscopy and later confirmed by X-ray crystallography² and total synthesis.³ Since PDEs are the partial structure of potent sequence-selective DNA alkylating agents, such as CC-1065⁴ and yatakemycin,⁵ construction of the highly functionalized 1,2-dihydro-3*H*-pyrrolo[3,2-*e*]indole has attracted considerable attention from the synthetic community.⁶ Although tremendous effort has been devoted to the synthesis of this class of compounds, no efficient and

Fig. 1 Structure of PDEs, CC-1065, and yatakemycin.

Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan. E-mail: tokuyama@mail.pharm.tohoku.ac.jp; Fax: (+81) 22 795-6877; Tel: (+81) 22 795-6887 † Electronic supplementary information (ESI) available: Experimental details, ¹H and ¹³C NMR spectra. See DOI: 10.1039/b926965g

Scheme 1 Mild aryl amination with CuI and CsOAc.

straightforward route has been reported except Martin's synthesis.^{6*i*} As an application of our original mild coppermediated aryl amination reaction (Scheme 1),⁷ we also developed a method for synthesis of PDE analogs, which are key segments for the synthesis of duocarmycins⁸ and yatakemycin.^{5b,d} However, there is still room for improvement with regard to efficiency. Herein, we describe an efficient synthesis of PDE-II (**2**) utilizing copper-mediated double aryl amination.

Our retrosynthetic analysis is outlined in Scheme 2. We planned to synthesize dihydropyrroloindole **3**, a possible precursor of PDE-II (**2**), directly from **5** through **4**, by generation of the primary amine side-chain by β -elimination and copper-mediated intramolecular double amination in one pot. Tetrahydro-isoquinoline **5** would be prepared by Mannich-type addition of a glycine unit to hemiaminal **6**, which should be derived from commercially available tetrahydroisoquinoline **7**.

The substrate for the amination reaction was synthesized from hemiaminal **8**, which was readily prepared from commercially available tetrahydroisoquinoline **7** using a five-step sequence established in our synthetic studies on yatakemycin (Scheme 3).^{5b,d} After transacetalization to **9** with trimethyl orthoformate and PPTS, a glycine moiety was introduced by reaction of ketene silyl acetal **10** in the presence of BF₃·OEt₂ to give **11**.^{9,10}

To test the proposed elimination and double amination sequence, we first subjected **11** to the standard amination conditions with a combination of CuI and CsOAc (Table 1,

Scheme 2 Retrosynthetic analysis.

Scheme 3 Preparation of the precursor for the key amination.

entry 1). As expected, we observed formation of the double amination product, dihydropyrroloindole **12**, although the yield was only 12%. A careful analysis of the crude material revealed formation of a series of byproducts, including tricyclic compound 13^{11} (14% yield), indole **14** (22%), and pyrroloindole **15** (11%). Based on these results, we speculated that the reaction should be initiated by amination of the Cbz carbamate to provide tricyclic compound **13**, which would undergo β -elimination to give **16** (not isolated) (Scheme 4). Then, the second amination or removal of the Cbz group provided **12** or **14**, respectively. Finally, conversion to **17** (not isolated) and the subsequent removal of the Ns group with concomitant aromatization furnished pyrroloindole **15**.

Since pyrroloindole **15** is known to be a synthetic intermediate of PDEs,^{6c} the next step was to optimize the reaction conditions to improve the yield of **12** or **15**. First, we examined the effect of additional base on the product distribution. Although the yields of tricyclic compound **15** were substantially improved, products **12**, **13**, and **14** still remained (entries 2 to 4). We then increased the amount of CuI in the presence of an additional base to converge all products to **15**. We found that using 1.5 equiv. of CuI and 3.0 equiv. of Cs₂CO₃ was effective to improve the yield of **15** to 57% (entry 6) while the

Table 1 Effect of bases on the double amination cascade

Scheme 4 Outline of pyrroloindole formation.

reaction using K_3PO_4 resulted in a diminished yield of **15** and isolation of **13** (entry 5).

Having established improved conditions to execute the double amination reaction to construct the tricyclic framework of PDEs, we then manipulated the functionalities of **15** to complete the total synthesis of PDE-II (**2**) (Scheme 5). According to the reported procedure,^{6a} selective reduction of the indole moiety followed by introduction of an acetyl group provided **18** in one pot. We carried out the next demethylation reaction using BCl₃ by modification of Cava's conditions.^{6c} In addition, we found that high dilution conditions (1 mM) were required for complete consumption of the starting material **18**. For the final hydrolysis step, we employed Boger's conditions utilizing Na₂S₂O₄ as a mild reductant.¹² Thus, treatment of **19** under the hydrolysis conditions provided PDE-II (**2**), whose physical properties were identical in all aspects to those reported for the natural product.¹

MeO ₂ C CbzHN Br MeO MeO	Ns Cul CsOAc (5.0 equ additive DMSO 90 °C, 3 h	iv) CbzN MeO MeO Br	+ HN MeO MeO MeO	MeO ₂ C + CbzN rNHNs MeO	Med N N N N N N N N	
11		13	14		12	15
Entry	CuI (equiv.)	Additive (equiv.)	13 $(\%)^a$	14 $(\%)^a$	12 $(\%)^a$	15 (%) ^a
1	1.0	none	14	22	12	11
2	1.0	KOt-Bu (1)	8.7	15	5.1	41
3	1.0	$K_{3}PO_{4}(3)$	4.5	13	8.9	50
4	1.0	$Cs_2CO_3(3)$	6.1	26	3.1	38
5^b	1.5	$K_3PO_4(3)$	13	_	_	18
6	1.5	Cs_2CO_3 (3)	—	—	_	57
^a Isolated vie	eld. ^b Reaction time: 5 h.					

Scheme 5 Total synthesis of PDE-II (2).

In summary, we have accomplished a highly efficient method for the total synthesis of PDE-II (2) utilizing one-pot copper-mediated intramolecular double amination. The methodology enabled us to synthesize PDE-II (2) in 7.5% yield over 11 steps from tetrahydroisoquinoline 7. Because of the high utility of the aryl amination reaction, $\frac{5b,d,7,8}{2}$ we believe that the synthetic strategy should be generally applicable to a wide variety of nitrogen-containing heterocycles.

This work was financially supported by the Ministry of Education, Culture, Sports, Science, and Technology, Japan, the KAKENHI, a Grant-in-Aid for Scientific Research (B) (20390003), Tohoku University Global COE program 'International Center of Research and Education for Molecular Complex Chemistry', Kato Memorial Bioscience Foundation.

Notes and references

- 1 Y. Enomoto, Y. Furutani, H. Naganawa, M. Hamada, T. Takeuchi and H. Umezawa, Agric. Biol. Chem., 1978, 42, 1331.
- Paceden and H. Onizzawa, Agric. Biol. Chem., 1976, 42, 1951.
 H. Nakamura, Y. Enomoto, T. Takeuchi, H. Umezawa and Y. Iitaka, Agric. Biol. Chem., 1978, 42, 1337.
- 3 (a) N. Komoto, Y. Enomoto, M. Miyagaki, Y. Tanaka, K. Nitanai and H. Umezawa, Agric. Biol. Chem., 1979, 43, 555;

(b) N. Komoto, Y. Enomoto, Y. Tanaka, K. Nitanai and H. Umezawa, Agric. Biol. Chem., 1979, 43, 559.

- 4 (a) D. L. Boger, C. W. Boyce, R. M. Garbaccio and J. A. Goldberg, *Chem. Rev.*, 1997, 97, 787; (b) J. P. Parrish, J. D. Trzupek, T. V. Hughes, I. Hwang and D. L. Boger, *Bioorg. Med. Chem.*, 2004, 12, 5845.
- 5 (a) M. S. Tichenor, D. B. Kastrinsky and D. L. Boger, J. Am. Chem. Soc., 2004, 126, 8396; (b) K. Okano, H. Tokuyama and T. Fukuyama, J. Am. Chem. Soc., 2006, 128, 7136; (c) M. S. Tichenor, J. D. Trzupek, D. B. Kastrinsky, F. Shiga, I. Hwang and D. L. Boger, J. Am. Chem. Soc., 2006, 128, 15683; (d) K. Okano, H. Tokuyama and T. Fukuyama, Chem.-Asian J., 2008, 3, 296; (e) M. S. Tichenor and D. L. Boger, Nat. Prod. Rep., 2008, 25, 220.
- 6 (a) R. E. Bolton, C. J. Moody, C. W. Rees and G. Tojo, J. Chem. Soc., Chem. Commun., 1985, 1775; (b) P. Carter, S. Fitzjohn and P. Magnus, J. Chem. Soc., Chem. Commun., 1986, 1162; (c) V. H. Rawal and M. P. Cava, J. Am. Chem. Soc., 1986, 108, 2110; (d) D. L. Boger and R. S. Coleman, Tetrahedron Lett., 1987, 28, 1027; (e) D. L. Boger and R. S. Coleman, J. Am. Chem. Soc., 1987, 109, 2717; (f) R. E. Bolton, C. J. Moody, C. W. Rees and G. Tojo, Tetrahedron Lett., 1987, 28, 3163; (g) R. E. Bolton, C. J. Moody, C. W. Rees and G. Tojo, J. Chem. Soc., Perkin Trans. 1, 1987, 931; (h) P. Carter, S. Fitzjohn, S. Halazy and P. Magnus, J. Am. Chem. Soc., 1987, 109, 2711; (i) P. Martin, Helv. Chim. Acta, 1989, 72, 1554.
- 7 (a) K. Yamada, T. Kubo, H. Tokuyama and T. Fukuyama, Synlett, 2002, 231; (b) K. Okano, H. Tokuyama and T. Fukuyama, Org. Lett., 2003, 5, 4987; (c) T. Kubo, C. Katoh, K. Yamada, K. Okano, H. Tokuyama and T. Fukuyama, Tetrahedron, 2008, 64, 11230.
- 8 K. Yamada, T. Kurokawa, H. Tokuyama and T. Fukuyama, J. Am. Chem. Soc., 2003, 125, 6630.
- 9 Mannich reaction of 8 with 10 did not proceed at all.
- 10 Preparation of ketene silyl acetal 10 was carried out according to Corey's internal quench method: E. J. Corey and A. W. Gross, *Tetrahedron Lett.*, 1984, 25, 495. Additional TBAF was found to be necessary for smooth removal of a trimethylsilyl group on nitrogen.
- 11 Compound 11 was isolated as a mixture of diastereomers. The relative stereochemistry was not determined due to the presence of the rotamers.
- 12 (a) D. L. Boger and R. S. Coleman, J. Am. Chem. Soc., 1988, 110, 1321; (b) D. L. Boger and R. S. Coleman, J. Am. Chem. Soc., 1988, 110, 4796; (c) K. S. MacMillan, Y. Nguyen, I. Hwang and D. L. Boger, J. Am. Chem. Soc., 2009, 131, 1187.