Preparation and Characterization of the Adduct Uranium Pentafluoride–Arsenic Pentafluoride (1/1)[†]

Darja Gantar * and Boris Frlec

Jožef Stefan Institute, Edvard Kardelj University, 61001 Ljubljana, Yugoslavia

The systems UF₅–AsF₅, UF₆–AsF₅–UF₄, and UF₄–AsF₅–F₂ were studied using anhydrous HF as a solvent. In all cases a dark blue solution results from which blue crystals of composition UF₅·AsF₅ were isolated at temperatures lower than -30 °C. At room temperature thermal decomposition of the adduct takes place giving AsF₅ vapour, and a solid residue which was identified as β -UF₅.

With metal(1) fluorides, uranium pentafluoride readily accepts fluoride ions to give adducts of the type, MUF₆, M₂UF₇, or M₃UF₈¹ depending on the reaction stoicheiometries employed. In reactions with the strong Lewis acid SbF₅, uranium pentafluoride has also been shown to act as a base and the fluorinebridged adducts UF₅·2SbF₅ and UF₅·SbF₅ have been prepared,² and a crystal structure of the former determined.³ Although AsF₅ is a weaker acid than SbF₅, it forms a large number of metal ⁴⁻⁷ and non-metal hexafluoroarsenates ⁸ which range from pure ionic salts to molecular adducts.⁹ The earlier evidence of the basic character of UF₅² suggested to us that an investigation of its reaction with AsF₅ would be worthwhile.

Experimental

Starting Materials.—Uranium pentafluoride was prepared by u.v. photolytic reduction of UF₆ using CO as scavenger ¹⁰ or by oxidation of UF₄ with UF₆ in anhydrous HF.¹¹ The product was identified by chemical analysis and its X-ray powder diffraction pattern. Uranium tetrafluoride was obtained by fluorination of UO₂ using HF in a flow system, and UF₆ by fluorination of UF₄ under pressure. Arsenic pentafluoride was prepared by fluorination of metallic arsenic with elemental fluorine and its purity was monitored by i.r. spectroscopy. Anhydrous HF was purified using sodium fluoride in a nickel can and by repeated distillation.

Apparatus.—FEP-Teflon or Kel-F tubes were used for the reactions. These were treated with anhydrous HF and pumped to high vacuum prior to use. Uranium pentafluoride or UF₄ was loaded into the tubes in a dry-box and anhydrous HF was distilled onto the solids under vacuum.

Preparation of the Sample.—(a) Uranium pentafluoride (ca. 1.5 mmol) was loaded into an FEP-Teflon tube in a drybox and anhydrous HF (3.5-4 g) was added. Arsenic pentafluoride was added stepwise and was dissolved after each addition. The solution turned blue and UF₅ was completely dissolved when a UF₅: AsF₅ ratio of 3:1 was obtained.

(b) A colourless solution of UF_6 containing an excess of AsF₅ in anhydrous HF was distilled onto a stoicheiometric amount of UF₄ with respect to UF₆ in an FEP-Teflon tube. When the reaction mixture was warmed the solution became blue and the solid dissolved after 25 min.

(c) When excess of AsF_5 was distilled onto UF_4 in anhydrous HF there was no obvious change. However, upon addition of fluorine the solution became green-blue. The solid UF_4

disappeared after 2 d of mixing and the solution became blue. When the volatiles, AsF_s and HF, were removed at room temperature bright green crystals appeared in the tube. If the volatiles were pumped away below -30 °C, blue crystals were deposited on the walls of the tube.

Characterization .--- The ionic species in solution were characterized by their Raman spectra. The solid product isolated below -30 °C was warmed to room temperature and weighed. The volatiles released were distilled into an FEP-Teflon tube. The i.r. spectrum of this gaseous component showed only absorptions attributable to AsF₅. The residue was identified by chemical analysis (Found: F, 27.3; U, 71.8. Calc. for UF₅: F, 28.5; U, 71.5%) and X-ray powder diffraction to be β -UF₅. The stoicheiometry was determined by mass balance. For chemical analysis, the product was held at -40 °C, opened in a glove-box, flushed with dry nitrogen, and ca. 150-mg samples were taken. During the manipulation partial decomposition occurred and some AsFs was released. A typical chemical analysis gave (Found: F, 39.5; U, 48.2. Calc. for UAsF₁₀: F, 37.8; U, 47.3%) a U : F ratio of 1.07 ± 0.02 : 10.

The Raman spectra of solutions and the crystals were recorded using a Spex 1401 instrument. An Ar^+ laser (Coherent Radiation) was used to provide the exciting radiation (514.5 nm). The i.r. spectra of the volatiles in a nickel cell with AgCl windows were obtained using a Zeiss UR 20 spectrometer.

Results and Discussion

Reactions of UF₅-AsF₅, UF₆-AsF₅-UF₄, and UF₄-AsF₅-F₂ in anhydrous HF give blue solutions when a greater than three-fold excess of AsF₅ is used. The Raman spectra of such solutions are identical, confirming that the same species are formed in each case. The Raman spectrum is given in Table 1 and is compared to that of UF5 and CsAsF6. This clearly shows that octahedrally symmetric AsF₆⁻ ions are present in solution. Bands not associated with the AsF_6^- group are those at 640 and 406 cm⁻¹. These are attributed to the vibrations of the cationic species. The former band lies in the region of uranium-fluorine stretching frequencies and is shifted to higher frequency relative to UF5. A band associated with uranium-fluorine (terminal) vibration is observed at 614 cm⁻¹ for β -UF₅ where a co-ordination number of seven is implied for uranium, and at 627 cm⁻¹ for α -UF₅ where the co-ordination number is six. The v_1 mode of the UF₆⁻ ion also appears at 628 cm⁻¹. Since bands are observed at higher frequency upon lowering of the co-ordination number for uranium, that at 640 cm⁻¹ could be attributed to a cationic uranium(v)

[†] Non-S.I. unit employed: mmHg \approx 134 Pa.

J. CHEM. SOC. DALTON TRANS. 1984

Table 1. Raman bands (cm^{-1}) of UF₅-AsF₅-HF, UF₆-AsF₅-HF-UF₄, and UF₄-AsF₅-HF-F₂ solutions, UF₅, and CsAsF₆ with intensities in parentheses

UF5-AsF5-HF, UF6-AsF5-HF-UF4, or			
UF ₄ -AsF ₅ -HF-F ₂	UF5	CsAsF ₆ *	Assignment
702 (100) 640 (32.9)		685	v₁(AsF6 ⁻) U−F (terminal) str
	627 (α form)		
	614 (β form)		
569 (7.5)		576	$v_2(AsF_6^-)$
	503 (a form)		
406 (11.4)			$U \cdots F \cdots U$
			(bridging)
			str
364 (11.8)		372	$v_5(AsF_6^-)$
	223 (a form)		
* G. M. Begun and A.	C. Rutenberg	, Inorg. Che	em., 1967, 6 , 2212.

species such as UF_4^+ . However, because of the size of the uranium atom in this oxidation state it never has a co-ordination number of four and it seems unlikely that an isolated UF_4^+ group can exist. Polymerization *via* covalent fluorine bridges between the uranium atoms thus giving a polyatomic uranium(v) species where the co-ordination number of the uranium is higher than four is more likely. The band observed at 406 cm⁻¹ in the Raman spectrum is in the region where uranium-fluorine (bridging) modes are expected.

When the blue solution is kept at temperatures lower than -30 °C and the volatiles are pumped away blue crystals appear. The weight loss vs. time of pumping was studied at -40 °C. The vapour pressure of AsFs at this temperature is higher than 760 mmHg and that of HF is 52 mmHg. The volatiles, AsF₅ and HF, were pumped to an FEP-Teflon trap at -196 °C under dynamic vacuum. The trap was then warmed to room temperature and weighed every 15 min. When transfer of volatiles had ceased the FEP-Teflon tube with the blue crystals was warmed and weighed. The solid decomposed to give a bright green solid which chemical analysis showed to be UF₅, and a gas whose i.r. spectrum exhibited absorptions attributable only to AsF₅. Thermal decomposition of the solid on a Mettler thermoanalyser also showed that in the first step the adduct lost AsF₅ and in the second step disproportionation of UF₅ occurred.

The Raman spectrum of the solid shows a larger number of bands than are expected for an ionic compound. In the spectra of solid hexafluoroarsenates the geometry of AsF_6^- is frequently distorted from O_h symmetry and this is explained by anion-cation interaction or the position of the anions in the lattice. The ionic radius of the uranium(5+) ion (0.76 × 10⁻¹⁰ m) is comparable to that of the chromium(2+) ion and the frequencies of the bands associated with the anionic part of the adduct CrF_2 ·AsF₅⁷ are similar to those observed for UF₅·AsF₅. Assignments have, therefore, been made on the basis of the molecule containing distorted (AsF₆⁻) anions of $C_{4\nu}$ symmetry (Table 2).

The implication is that the molecule contains (AsF_6^-)

Table 2. Raman data (cm^{-1}) for the adducts UF₅·AsF₅ and CrF₂·AsF₅ with intensities in parentheses

UF ₅ ·AsF ₅	CrF2·AsF5 7	Assignment
		C_{4n}
	739 (9)	
708 (100)	702 (100)	$v_1(a_1)$
680 (sh)	678 (24)	••••
664 (35)		U-F (terminal)
638 (67)		str
	606 (15)	v(MF)+
596 (18)	596 (16)	$v_2(a_1)$
568 (18)	572 (18)	$v_{s}(b_{1})$
	484 (19)	$v[(MF)_n^{n+}]$
403 (16)		U · · · F (bridging)
		str
	385 (25)	$v_0(e)$
364 (6)	360 (18)	$v_7(b_2)$
304 (sh)	293 (17)	$v_{11}(b_2)$
216 (12.3)		

anions which are fluorine bridged to the uranium atoms. The nature of the uranium species is less clear. The Raman bands at 638 and 664 cm⁻¹ can be attributed to a uranium-fluorine (terminal) stretching vibration, while that at 403 cm⁻¹ is almost certainly a uranium-fluorine (bridging) mode. The adduct may, therefore, be UF₄⁺AsF₆⁻ or UF₄ⁿ⁺AsF₆^{n⁻} in which the covalent contribution to the bonding is significant.

When $UF_5 \cdot AsF_5$ is warmed decomposition takes place and the residual solid exhibits a strong band at 614 cm⁻¹ in the Raman spectrum which is attributable to β -UF₅.

Acknowledgements

We are indebted to Miss B. Sedej for the analytical work. The financial support of the Research Community of Slovenia is also gratefully acknowledged.

References

- I Gmelin Handbuch, System No. 55, Ergänzungsband C8, Springer, Berlin, 1980, pp. 221-241.
- 2 R. Bougon and P. Charpin, J. Fluorine Chem., 1979, 14, 235.
- 3 W. Sawodny, K. Rediess, and U. Thewalt, Z. Anorg. Allg. Chem., 1980, 469, 81.
- 4 T. Birchall, P. A. W. Dean, and R. J. Gillespie, J. Chem. Soc. A, 1971, 1777.
- 5 P. A. W. Dean, J. Fluorine Chem., 1975, 5, 499.
- 6 B. Frlec, D. Gantar, and J. H. Holloway, J. Fluorine Chem., 1982, 19, 485.
- 7 B. Frlec, D. Gantar, and J. H. Holloway, J. Fluorine Chem., 1982, 20, 385.
- 8 J. D. Smith, in 'The Chemistry of Arsenic, Antimony and Bismuth,' Pergamon Texts in Inorganic Chemistry, vol. 2, Pergamon, Oxford, 1973, p. 675.
- 9 H. Selig and N. Aminadov, Inorg. Nucl. Chem. Lett., 1970, 6, 595.
- 10 G. W. Halstead, P. G. Eller, L. B. Asprey, and K. V. Salazar, *Inorg. Chem.*, 1978, 17, 2967.
- 11 J. C. Taylor and A. B. Waugh, J. Solid State Chem., 1980, 35, 137.

Received 9th January 1984; Paper 4/031