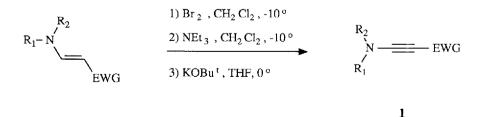
A Convenient Route to Polyfunctionalised Indeno[1,2 - b]pyran Derivatives

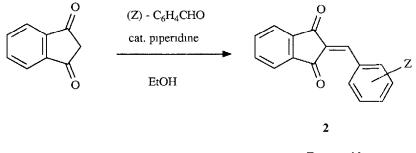
Jason Bloxham and Colin P. Dell*


Lilly Research Centre, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, U K

Key Words: Regioselective hetero-Diels-Alder reaction; ynamine; indeno[1,2-b]pyran.

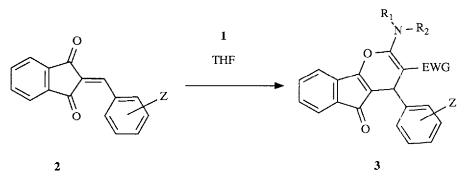
Abstract: 2-Arylidene-1,3-indanediones undergo facile formal hetero-Diels-Alder cycloadditions with ynamines bearing electron-withdrawing groups yielding polyfunctionalised indeno[1,2-b]pyrans.

Although the use of enol ethers and even simple alkenes as partners to 1-oxa-1,3-dienes in hetero-Diels-Alder approaches to dihydropyran ring systems is well documented¹, ynamines² have received relatively little attention as the 2π components in such schemes³. Indeed, ynamines bearing useful functional groups do not appear to have been utilised in pyran synthesis at all. In this communication, we report the synthesis of diversely functionalised indeno[1,2-*b*]pyrans by a formal hetero-Diels-Alder reaction of 2-arylidene-1,3-indanediones^{4,5} with ynamine esters and nitriles.


The desired ynamine esters (1, EWG = CO_2Me) were prepared by a route analogous to that described for methyl 3-dimethylaminoprop-2-ynoate⁶ (scheme 1).

 R_1 , R_2 , EWG - see table

Scheme 1


With the failure in our hands of existing routes^{7,8} to ynamine nitriles, this bromination/dehydrobromination chemistry⁶ was extended to encompass for the first time ynamine nitrile synthesis⁹. Whilst the esters (1, EWG = CO_2Me) were relatively stable, isolable compounds, it proved necessary to generate the nitriles (1, EWG = CN) at low temperature and use them without purification¹⁰ The 2-arylidene-1,3-indanediones 2 were prepared by established procedures⁴ (scheme 2).

Z - see table

Scheme 2

The key reaction¹¹ proceeded as envisaged (scheme 3) providing multiply functionalised indeno[1,2-*b*]pyrans¹² **3**, generally in moderate yields (table). Furthermore, in common with related chemistry^{3,5}, the formal [4+2] cycloaddition was regioselective, producing only the depicted 2-dialkylaminopyran isomer¹³. This regiochemistry was unambiguously demonstrated by a series of ¹H n.m.r. nuclear Overhauser difference experiments on **3b**, showing the close spatial proximity of the pyran 4<u>H</u>, the ester CO₂Me and the *ortho* protons of the *para*-nitrophenyl group

 $R_1\,$, $R_2\,$, EWG, $Z\,$ - see table

Scheme 3

	Table		
R ₁ - R ₂	EWG	Z	Compound (Yield [*] ,%)
-[CH ₂] ₄ -	CO ₂ Me	3-NO ₂	3a (43)
-[CH ₂] ₄ -	CO ₂ Me	$4-NO_2$	3b (32)
-[CH ₂] ₅ -	CO_2Me	3-NO ₂	3c (50)
-[CH ₂] ₅ -	CO ₂ Me	$4-NO_2$	3d (37)
-[CH ₂] ₅ -	CO ₂ Me	3-CF ₃	3e (28)
-[CH ₂] ₂ O[CH ₂] ₂ -	CO_2Me	$4-NO_2$	3f (39)
-[CH ₂] ₂ O[CH ₂] ₂ -	CN	$4-NO_2$	3g (11)
-[CH ₂] ₂ O[CH ₂] ₂ -	CN	3-CF ₃	3h (10)

* Isolated yields of pure material

Table

Mechanistically, it is interesting to speculate whether the reaction is a true concerted [4+2] process or a stepwise one², proceeding via nucleophilic attack of the highly polarised ynamine 1 on the electron deficient arylidene indanedione 2. At present we have no evidence to be able to distinguish between these pathways.

Acknowledgement: We thank the Erl Wood Physical Methods group for spectral data and particularly Dr Sinead D'Arcy for the n O.e. experiments.

REFERENCES AND NOTES

Review: Desimoni, G.; Tacconi, G.; Chem. Rev., 1975, 75, 651-692. 1. Intramolecular aspects (review): Tietze, L.F.; J Heterocycl Chem., 1990, 27, 47-69. Recent examples: Yamauchi, M.; Katayama, S.; Baba, O.; Watanabe, T., J. Chem. Soc. Perkin Trans. 1, 1990, 3041-3044. Krause, M.; Hoffmann, H.M R ; Tetrahedron Lett , 1990, 31, 6629-6632 Chauncey, M.A.; Grundon, M F.; Synthesis, 1990, 1005-1007 Schmidt, R.R.; Haag-Zeino, B., Liebigs Ann Chem, 1990, 1197-1203. Hojo, M., Masuda, R.; Okada, E., Synthesis, 1990, 347-350.

- For a review of the synthetic utility of ynamines see: Ficini, J , Tetrahedron, 1976, 32, 1449-1486. 2.
- 3. Ficini, J., Krief, A.; Tetrahedron Lett., 1969, 1427-1430. Ficini, J.; Krief, A.; Tetrahedron Lett., 1970, 885-888 Ficini, J.; Besseyre, J.; Krief, A.; Bull Soc Chim Fr, 1976, 987-990. Myers, P.L.; Lewis, J.W.; J Heterocycl. Chem., 1973, 10, 165-166. Meyer, H.; Bossert, F.; Vater, W; Stoepel, K.; Ger. Offen. 2,235,406 [Chem. Abs., 1974, 80, 120765b].
- 4. Synthesis: Okukawa, T.; Suzuki, K.; Sekiya, M.; Chem Pharm Bull, 1974, 22, 448-451.

- Hetero-Diels-Alder reactions of 2-arylidene-1,3-indanediones with enol ethers, ketene acetals and phosphacumulenes have been reported:
 Bitter, J., Leitich, J.; Partale, H; Polansky, O.E., Riemer, W.; Ritter-Thomas, U.; Schlamann, B.; Stillkrieg, B; Chem Ber; 1980, 113, 1020-1032.
 Soliman, F.M.; Khahl, K.M.; Phosphorus Sulphur, 1987, 29, 165-167.
- 6. Gais, H.J.; Hafner, K.; Neuenschwander, M; Helv Chim. Acta ,1969, 52, 2641-2657.
- 7 Kuehne, M.E.; Linde, H.; J Org Chem, 1972, 37, 1846-1847.
- 8. Sasaki, T; Kojima, A.; J. Chem. Soc. (C), 1970, 476-480.
- 9 For the preparation of the enamine nutriles necessary for this chemistry see: Bellus, D., *Helv. Chim Acta*, **1977**, *60*, 2379-2387.
- 10. In our hands neither 3-(4-morpholino)- nor 3-(dimethylamino)-propynenitrile were isolable by distillation. Typically, for ynamine nitrile synthesis, we carried out the potassium *tert*-butoxide step at -60°, allowed the crude reaction mixture to warm to -20° and then added **2** directly to the mixture.
- 11. Typical procedure: to a stirred suspension of 2-(4-nitrobenzylidene)-1,3-indanedione (7.15g, 25.6mmol) in dry THF (125 cm³) at room temperature was added dropwise over five minutes methyl 3-(1-pyrrolidino)prop-2-ynoate (6.85g, 44.7mmol). There was a slight exotherm and the bulk of the arylidene indanedione dissolved. After two hours, a further portion of the arylidene indanedione (3.60g, 12.9mmol) was added. Fifteen hours later, the brown-black solution was concentrated to dryness. The viscous gum was triturated with dichloromethane and this solution then concentrated. Addition of 2·1 hexane/ether to the resulting gum caused solidification. The solid was then stirred with methanol to remove traces of impurities, filtered off, dried *in vacuo*, providing **3b** as a yellow powder (5.33g, 32%).
- 12. All new compounds possessed spectral and microanalytical parameters which were fully consistent with the depicted structures.
- 13 The other regioisomer was not present in the crude reaction mixture.

(Received in UK 21 May 1991)