

www.elsevier.nl/locate/poly

Polyhedron 19 (2000) 1627-1631

Synthesis and characterization of heterodinuclear thiolate complexes containing the Pd(η^3 -allyl)⁺ moiety. Crystal structure of [(dppe)Pd(μ -SC₆H₄Me-p)₂Pd(η^3 -C₃H₅)][ClO₄]

José Ruiz^a, José Giner^a, Venancio Rodríguez^a, Gregorio López^{a,*}, Jaume Casabó^b, Elies Molins^c, Carles Miravitlles^c

^a Departamento de Química Inorgánica, Universidad de Murcia, 30071 Murcia, Spain

^b Departament de Química, Universitat Autònoma de Barcelona, Campus Universitari de Bellaterra, 08193-Cerdanyola, Barcelona, Spain ^c Institut de Ciència de Materials de Barcelona, CSIC, Campus Universitari de Bellaterra, 08193-Cerdanyola, Barcelona, Spain

Received 1 February 2000; accepted 22 May 2000

Abstract

Heterodinuclear complexes of the types $[(dppe)M(\mu-SR)_2Pd(\eta^3-allyl)][ClO_4]$ (M = Pd or Pt) and $[(dppe)Pt(\mu-SC_2H_4S)Pd(\eta^3-allyl)][ClO_4]$ [dppe = 1,2-bis(diphenylphosphino)ethane; allyl = C₃H₅ or C₄H₇] have been obtained by reaction of the corresponding *cis*-dithiolato complexes, $[M(SR)_2 (dppe)]$ or $[Pt(SC_2H_4S)(dppe)]$, and $[Pd(\eta^3-allyl)(PhCN)_2][ClO_4]$. The identity of these complexes has been established by NMR (¹H and ³¹P) spectroscopy. The crystal structure of $[(dppe)Pd(\mu-SC_6H_4Me-p)_2Pd(\eta^3-C_3H_5)][ClO_4]$ has been determined by single-crystal X-ray methods. The *p*-tolyl groups on the sulfur atoms adopt a *syn* conformation with respect to the central Pd-S₂-Pd core. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Palladium; Platinum; Thiolate complexes; Allyl complexes

1. Introduction

The relevance of transition-metal complexes with Sdonor ligands as models of biologically redox-active metalloproteins [1] has stimulated interest in the chemistry of metal thiolates [2,3]. Platinum and palladium μ -thiolate complexes are also of recent interest due to their possible use in homogeneous catalysis [4–6]. For example, systems of the type [Pt₂(μ -SR)(μ -Cl)Cl₂(PR'₃)₂]/SnCl₂·H₂O have a high catalytic activity in the hydrogenation of styrene [7].

We have recently described the synthesis of di- and tri-nuclear nickel(II), palladium(II) or platinum(II) complexes with bridging thiolato groups of the types $[NBu_4]_2[M_2(C_6F_5)_4(\mu$ -SR)_2], $[NBu_4]_2[M_3(C_6F_5)_4(\mu$ -SR)_4] (M = Ni, Pd or Pt) [8,9] and $[\{Pd(CH_2C_9H_6N)\}_2(\mu$ -SR)(μ -O₂CR'')] (CH₂C₉H₆N = 8-quinolylmethyl) [10]. Dinuclear thiolato-bridged allylpalladium complexes have been reported recently [11]. On the other hand, the

synthesis and study of heterobinuclear complexes have been the subject of active research over the past years, as they can serve as models for active intermediates in heterobimetallic catalysis [12].

In this paper we report the preparation of a variety of heterodinuclear MM' (M = Pd, Pt; M' = Pd) complexes with bridging thiolato ligands by using *cis*-dithiolato complexes [M(SR)₂ (dppe)] [M = Pd or Pt; dppe = 1,2-bis(diphenylphosphino)ethane] and [Pd(η^3 allyl)(PhCN)₂]⁺, which contain the readily removable PhCN ligands, as building blocks.

2. Experimental

The C, H, N, S analyses were performed with a Carlo Erba model EA 1108 microanalyzer. Decomposition temperatures were determined with a Mettler TG-50 thermobalance at a heating rate of 5°C min⁻¹ and the solid sample under nitrogen flow (100 ml min⁻¹). Molar conductivities were measured in acetone solution (c Å 5×10^{-4} mol dm⁻³) with a Crison 525 conducti-

^{*} Corresponding author. Fax: +34-68-36-4148.

E-mail address: gll@fcu.um.es (G. López).

meter. The NMR spectra were recorded on a Bruker AC 200E or Varian Unity 300 spectrometer, using SiMe₄ and H₃PO₄ as standards, respectively. Infrared spectra were recorded on a Perkin–Elmer 1430 spectrophotometer using Nujol mulls between polyethylene sheets. Solvents were dried by the usual methods. The starting complexes [M(SR)₂](dppe) (M = Pd or Pt), [Pt(SC₂H₄S)(dppe)] [13] and [Pd(η^3 -allyl)-(PhCN)₂][ClO₄] (allyl = C₃H₅ or C₄H₇) [14] were prepared by procedures described elsewhere.

Safety note. **Caution!** Perchlorate salts of metal complexes with organic ligands are potentially explosive. Only small amounts of these materials should be prepared, and they should be handled with great caution.

2.1. Preparation of complexes 1–11

To a solution of the corresponding benzonitrile com- $[Pd(\eta^{3}-allyl)(PhCN)_{2}][ClO_{4}] \quad (0.3)$ mmol) in plex methanol (20 cm³) was added the corresponding ciscomplex dithiolato $[M(SR)_2]$ (dppe)] or $[Pt(SC_2H_4S)(dppe)]$ (0.3 mmol) with constant stirring at room temperature (r.t.) (2 h for the palladium compounds or 4 h for the platinum complexes) to afford a suspension from which the solvent was partially evaporated under reduced pressure and, after addition of water, filtered-off. The desired yellow complex was air-dried.

Complex 1: Yield 54%; m.p. 154°C (dec.). *Anal.* Calc. for C₄₁H₃₉ClO₄P₂Pd₂S₂: C, 50.8; H, 4.1; S, 6.6. Found: C, 50.8; H, 4.1; S, 6.3%. $A_{\rm M}$ 130 S cm² mol⁻¹. ¹H NMR (CDCl₃): δ 7.6–7.3 (m, 20H, aromatics dppe), 6.99 (d, 4H, H_o of SPh, $J_{\rm om}$ = 7.7 Hz), 6.88 (t, 2H, H_p of SPh, $J_{\rm mp}$ = 7.7), 6.69 (pseudo-t, 4H, H_m of SPh), 5.56 (m, 1H, CCHC allyl), 3.76 (d, 2H, H_{syn}, J = 6.9), 3.25 (d, 2H, H_{anti}, J = 12.6), 2.39 (d, 4H, CH₂ dppe, $J_{\rm HP}$ = 22.5). ³¹P NMR (CDCl₃) δ 60.8 (s).

Complex 2: Yield 55%; m.p. 189°C (dec.). *Anal.* Calc. for C₄₃H₄₃ClO₄P₂Pd₂S₂: C, 51.7; H, 4.3; S, 6.4. Found: C, 52.0; H, 4.5; S, 6.4%. $\Lambda_{\rm M}$ 145 S cm² mol⁻¹. ¹H NMR (CDCl₃): δ 7.6–7.3 (m, 20H, aromatics dppe), 6.86 (d, 4H, H_o of SC₆H₄Me, $J_{\rm om}$ = 7.8 Hz), 6.48 (d, 4H, H_m of SC₆H₄Me, $J_{\rm om}$ = 7.8), 5.57 (m, 1H, CCHC allyl), 3.76 (d, 2H, H_{syn}, J = 6.9), 3.24 (d, 2H, H_{anti}, J = 12.7), 2.38 (d, 4H, CH₂ dppe, $J_{\rm HP}$ = 22.6), 2.12 (s, 6H, Me). ³¹P NMR (CDCl₃): δ 60.0 (s).

Complex 3: Yield 56%; m.p. 175°C (dec.). *Anal.* Calc. for $C_{33}H_{39}ClO_4P_2Pd_2S_2$: C, 45.4; H, 4.5; S, 7.3. Found: C, 45.1; H, 4.5; S, 7.3%. Λ_M 150 S cm² mol⁻¹. ¹H NMR (CDCl₃): δ 8.0–7.4 (m, 20H, aromatics dppe), 5.46 (m, 1H, CCHC allyl), 3.93 (d, 2H, H_{syn}, J = 6.9 Hz), 3.03 (d, 2H, H_{anti}, J = 12.4), 2.59 (d, 4H, CH₂ dppe, $J_{HP} = 23.4$), 2.03 (m, 4H, CH₂S), 0.88 (t, 6H, CH₃ CH₂S, J = 7.2). ³¹P NMR (CDCl₃): δ 60.5 (s).

Complex 4: Yield 59%; m.p. 175°C (dec.). *Anal.* Calc. for $C_{34}H_{41}ClO_4P_2Pd_2S_2$: C, 46.0; H, 4.7; S, 7.2. Found:

C, 45.5; H, 4.7; S, 7.1%. $\Lambda_{\rm M}$ 148 cm² S mol⁻¹. ¹H NMR (CDCl₃): δ 7.8–7.4 (m, 20H, aromatics dppe), 3.64 (s, 2H, H_{syn}), 2.87 (s, 2H, H_{anti}), 2.59 (d, 4H, CH₂ dppe, $J_{\rm HP}$ = 24.0 Hz), 2.03 (m, 4H, CH₂S), 1.98 (s, 3H, CH₃ allyl), 0.86 (t, 6H, *CH*₃ CH₂S, *J* = 7.2). ³¹P NMR (CDCl₃): δ 60.7 (s).

Complex 5: Yield 68%; m.p. 188°C (dec.). *Anal.* Calc. for C₄₁H₃₉ClO₄P₂PdPtS₂: C, 46.5; H, 3.7; S, 6.1. Found: C, 46.8; H, 3.8; S, 5.8%. $A_{\rm M}$ 135 S cm² mol⁻¹. ¹H NMR (CDCl₃): δ 7.7–7.3 (m, 20H, aromatics dppe), 6.96 (d, 4H, H_o of SPh, $J_{\rm om}$ = 7.3 Hz), 6.81 (t, 2H, H_p of SPh, $J_{\rm mp}$ = 7.3), 6.67 (pseudo-t, 4H, H_m of SPh), 5.52 (m, 1H, CCHC allyl), 3.76 (d, 2H, H_{syn}, J = 6.9), 3.23 (d, 2H, H_{anti}, J = 12.6), 2.25 (d, 4H, CH₂ of dppe, $J_{\rm HP}$ = 19.8). ³¹P NMR (CDCl₃): δ 45.6 (s, $J_{\rm PtP}$ = 3108 Hz).

Complex 6: Yield 73%; m.p. 194°C (dec.). *Anal.* Calc. for C₄₃H₄₃ClO₄P₂PdPtS₂: C, 47.5; H, 4.0; S, 6.0. Found: C, 47.1; H, 4.0; S, 5.8%. $A_{\rm M}$ 136 S cm² mol⁻¹. ¹H NMR (CDCl₃): δ 7.7–7.3 (m, 20H, aromatics dppe), 6.88 (d, 4H, H_o of SC₆H₄Me, $J_{\rm om}$ = 7.8 Hz), 6.49 (d, 4H, H_m of SC₆H₄Me, $J_{\rm om}$ = 7.8), 5.57 (m, 1H, CCHC allyl), 3.81 (d, 2H, H_{syn}, J = 6.9), 3.26 (d, 2H, H_{anti}, J = 12.6), 2.28 (d, 4H, CH₂ dppe, $J_{\rm HP}$ = 19.1), 2.14 (s, 6H, Me). ³¹P NMR (CDCl₃): δ 45.2 (s, $J_{\rm PtP}$ = 3110 Hz).

Complex 7: Yield 74%; m.p. 191°C (dec.). Anal. Calc. for $C_{33}H_{39}ClO_4P_2PdPtS_2$: C, 41.2; H, 4.1; S, 6.7. Found: C, 41.3; H, 4.0; S, 7.1%. Λ_M 131 S cm² mol⁻¹. ¹H NMR (CDCl₃): δ 8.0–7.5 (m, 20H, aromatics dppe), 5.47 (m, 1H, CCHC allyl), 4.01 (d, 2H, H_{syn}, J = 6.7Hz), 3.05 (d, 2H, H_{anti}, J = 12.5), 2.50 (d, 4H, CH₂ dppe, $J_{HP} = 19.7$), 2.17 (m, 4H, CH₂S), 0.89 (t, 6H, CH₃ CH₂S, J = 6.6). ³¹P NMR (CDCl₃): δ 46.8 (s, $J_{PtP} = 3055$ Hz).

Complex 8: Yield 57%; m.p. 168°C (dec.). *Anal.* Calc. for $C_{42}H_{41}ClO_4P_2PdPtS_2$: C, 47.0; H, 3.9; S, 6.0. Found: C, 46.7; H, 3.7; S, 5.8%. Λ_M 133 S cm² mol⁻¹. ¹H NMR (CDCl₃): δ 7.8–7.2 (m, 20H, aromatics dppe), 6.94 (d, 4H, H_o of SPh, $J_{om} = 7.3$ Hz), 6.83 (t, 2H, H_p of SPh, $J_{mp} = 7.3$), 6.68 (pseudo-t, 4H, H_m of SPh), 3.59 (s, 2H, H_{syn}), 3.12 (s, 2H, H_{anti}), 2.33 (d, 4H, CH₂ dppe, $J_{HP} = 18.9$), 1.96 (s, 3H, CH₃ allyl). ³¹P NMR (CDCl₃): δ 45.9 (s, $J_{PtP} = 3105$ Hz).

Complex 9: Yield 67%; m.p. 153°C (dec.). *Anal.* Calc. for $C_{34}H_{41}ClO_4P_2PdPtS_2$: C, 41.8; H, 4.2; S, 6.6. Found: C, 41.6; H, 4.2; S, 6.4%. Λ_M 145 S cm² mol⁻¹. ¹H NMR (CDCl₃): δ 8.0–7.3 (m, 20H, aromatics dppe), 3.71 (s, 2H, H_{syn}), 2.89 (s, 2H, H_{anti}), 2.49 (d, 4H, CH₂ dppe, $J_{HP} = 20.4$ Hz), 2.12 (m, 4H, CH₂S), 1.99 (s, 3H, CH₃ allyl), 0.87 (t, 6H, *CH*₃ CH₂S, J = 7.2). ³¹P NMR (CDCl₃): δ 47.1 (s, $J_{PtP} = 3056$ Hz).

Complex 10: Yield 46%; m.p. 170°C (dec.). Anal. Calc. for $C_{31}H_{33}ClO_4P_2PdPtS_2$: C, 39.9; H, 3.6; S, 6.9. Found: C, 39.3; H, 3.6; S, 6.8%. Λ_M 120 S cm² mol⁻¹. ¹H NMR (CDCl₃): δ 7.9–7.3 (br m, 20H, aromatics dppe), 5.1 (br, 1H, CCHC allyl), 4.08 (br, 2H, H_{syn}),

Table 1						
Crystal	data	and	structure	refinement	for 2	2

Empirical formula Formula weight Temperature (K) Wavelength (Mo K α) (Å) Crystal system Space group Unit cell dimensions a (Å) b (Å)	$C_{43}H_{43}ClO_4P_2Pd_2S_2$ 998.08 294(2) 0.71073 triclinic $P\bar{1} \ (\# 2)$ 10.873(1) 11.698(1)
c (A) α (°) β (°) γ (°)	17.353(2) 84.733(9) 88.052(8) 77.284(8)
Volume (Å ³)	2143.7(4)
Z Density (calculated) (Mg m ⁻³) Absorption coefficient (mm ⁻¹) F(000) θ Range for data collection (°) Index ranges	2 1.546 1.113 1008 2.23–30.42 $0 \le h \le 15, -16 \le k \le 16, -24 \le 1 \le 24$
Reflections collected Independent reflections Refinement method	13 602 12 973 ($R_{int} = 0.0127$) Full-matrix least-squares on F^2
Data/restraints/parameters Goodness-of-fit on F^2 Final <i>R</i> indices $[I > 2\sigma(I)]$ <i>R</i> indices (all data) Largest difference peak and hole (e Å ⁻³)	$12 973/1/468$ 1.047 $R_1 = 0.0383, wR_2 = 0.1184$ $R_1 = 0.0580, wR_2 = 0.1306$ 1.543 and -1.058

Fig. 1. Perspective view of the molecular structure of 2.

3.0–2.5 (br m, 10H, $H_{anti} + CH_2$ dppe + SCH₂CH₂S). ³¹P NMR (CDCl₃): δ 46.3 (s, $J_{PtP} = 2748$ Hz).

Complex 11: Yield 45%; m.p. 125°C (dec.). Anal. Calc. for $C_{32}H_{35}ClO_4P_2PdPtS_2$: C, 40.6; H, 3.7; S, 6.8. Found: C, 40.3; H, 3.7; S, 6.6%. Λ_M 135 S cm² mol⁻¹. ¹H NMR (CDCl₃): δ 7.8–7.3 (m, 20H, aromatics dppe), 3.81 (br, 2H, H_{syn}), 3.0–2.5 (br m, 10H, H_{anti} + CH₂ dppe + SCH₂CH₂S), 1.80 (br, 3H, CH₃ allyl). ³¹P NMR (CDCl₃): δ 45.2 (s, J_{PtP} = 3050 Hz).

2.2. Determination of the X-ray crystal structure of complex **2**

A single crystal of complex 2 (approximate dimensions $0.55 \times 0.37 \times 0.24$ mm) was mounted on an Enraf-Nonius CAD4 diffractometer equipped with a graphite monochromator for Mo K α radiation. The crystallographic data are shown in Table 1 (Fig. 1). Accurate cell parameters were determined by least-squares fitting of 25 high-angle reflections. The scan method was $\omega - 2\Theta$ and the empirical Psi scan mode absorption correction was applied. The structure was solved by heavy atom methods SHELXS-86 [15] and refined anisotropically on F^2 [16]. Hydrogen atoms were introduced in calculated positions. The residual peaks in the final Fourier difference synthesis were located close to the metal atoms.

3. Results and discussion

The mononuclear palladium and platinum complexes $[M(SR)_2 (dppe)]$ (M = Pd or Pt) or $[Pt(SC_2H_4S)(dppe)]$ [dppe = 1,2-bis(diphenylphosphino)ethane] react with $[Pd(\eta^3-allyl)(PhCN)_2][ClO_4]$ (allyl = C_3H_5 or C_4H_7) in a 1:1 molar ratio to give heterodinuclear complexes of the types $[(dppe)M(\mu-SR)_2Pd(\eta^3-allyl)][ClO_4]$ (M = Pd or Pt) (1–9) and $[(dppe)Pt(\mu-SC_2H_4S)Pd(\eta^3-allyl)][ClO_4]$ (10 and 11) with the concomitant release of PhCN (Scheme 1).

Fig. 2. Variable-temperature ¹H NMR spectrum of 11.

The new complexes 1-11 have been characterized on the basis of partial elemental analyses and spectroscopic data and they behave in acetone as 1:1 electrolytes [17], in accordance with the formulas given.

The ³¹P NMR spectra show a single resonance and those of the platinum complexes are flanked by the satellites due to coupling to ¹⁹⁵Pt, the coupling constant being in the range 2700–3100 Hz.

The ¹H NMR spectra of complexes 1-9 show a single set of resonances, indicating that both thiolate ligands are equivalent and the free rotation of the thiolate aryl or alkyl group around the C–S bond. The ¹H NMR spectra of complexes 1-3 and 5-7 show also three resonances with the expected intensity ratio (1:2:2) and peak multiplicities in the allylic group region (multiplet for CCHC, doublet for *syn* protons, and doublet for *anti* protons) whereas the spectra of complexes **4** and **8**–**9** show three singlet resonances for the methylallyl group with the expected intensity ratio of 2:2:3.

However, the ¹H NMR spectra of complexes **10** and **11** show broad bands at room temperature, which

Table 2 Selected distances (Å) and bond angles (°) for complex ${\bf 2}$

Bond distances		Bond angles		
Pd(1)–P(1)	2.2777(8)	P(1)-Pd(1)-P(2)	85.34(3)	
Pd(1) - P(2)	2.2871(8)	P(1)-Pd(1)-S(1)	96.87(3)	
Pd(1) - S(1)	2.3742(8)	P(2)-Pd(1)-S(1)	172.13(3)	
Pd(1)-S(2)	2.3783(8)	P(1)-Pd(1)-S(2)	172.45(3)	
$Pd(1)\cdots Pd(2)$	3.2428(4)	P(2)-Pd(1)-S(2)	95.85(3)	
Pd(2)–C(40)	2.085(5)	S(1) - Pd(1) - S(2)	80.98(3)	
Pd(2)–C(39)	2.137(4)	Pd(2)-S(1)-Pd(1)	86.77(3)	
Pd(2)–C(41)	2.140(4)	Pd(2)-S(2)-Pd(1)	86.54(3)	
Pd(2)–S(1)	2.3465(8)	S(1) - Pd(2) - S(2)	82.10(3)	
Pd(2) - S(2)	2.3524(9)	C(40) - Pd(2) - S(1)	140.5(2)	
		C(39)-Pd(2)-S(1)	105.58(14)	
		C(41)-Pd(2)-S(1)	171.3(2)	
		C(40)-Pd(2)-S(2)	137.1(2)	
		C(39)-Pd(2)-S(2)	172.24(14)	
		C(41)-Pd(2)-S(2)	105.1(2)	
		C(41)-C(40)-C(39)	142.4(8)	

suggests a fluxional behavior in the ¹H NMR scale of time. Rotation of the η^3 -allyl group has been suggested as a possible dynamic process [18]. The ¹H NMR spectrum of complex **11** at -50° C (Fig. 2) shows two different singlets at δ 3.91 and 3.83 assigned to *syn* protons and two additional singlets at δ 1.86 and 1.80 due to the Me protons of the allyl groups of the two conformational isomers tentatively shown in Scheme 2 (signals due to the *anti* protons are obscured by resonances of dppe and SC₂H₄S ligands).

Suitable crystals of complex **2** were grown from acetone–ethanol. The structure of **2** is shown in Fig. 1 and selected lengths and angles in Table 2. Both metal atoms, Pd(1) and Pd(2), are coordinated in a slightly distorted square-planar geometry and the phenyl groups on the sulfur atoms adopt a *syn* arrangement with respect to the central Pd–S₂–Pd core. The same conformation has been recently found in $[(C_6F_5)_2Ni(\mu-SPh)_2Pd(dppe)]$ [19], $[\eta^5-C_5H_4SiMe_3)_2Ti(\mu-SPh)_2Pd(C_6-F_5)_2]$ [20] and $[\eta^5-C_5H_5)Ti(\mu-SMe)_2PtMe_2]$ [21].

The Pd(1)–S distances are 2.3742(3) and 2.3783(8) Å, significantly longer than Pd(2)–S distances, 2.3465(8) and 2.3524(9) Å. This is due to the strong *trans* influence of the phosphine ligand [19]. The Pd···Pd distance is 3.2428(4) Å, showing no significant metal–metal interaction. The PdSPdS ring adopts a hinged square-planar geometry with a dihedral angle of 129.9° along

Scheme 2.

the S···S line. As expected, the PdP_2C_2 chelate ring is non-planar. The Pd- η^3 -allyl distances are in the range expected for a Pd(II)-allyl.

4. Supplementary material

Supplementary data for complex **2** are available from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK on request, quoting the deposition number CCDC 139771. Copies of this information may be obtained free of charge from: The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (Fax: +44-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk or www: http:// www.ccdc.cam.ac.uk).

Acknowledgements

Financial support from the DGICYT (project PB97-1036), Spain, is gratefully acknowledged. V.R. thanks CajaMurcia, Spain, for a research grant.

References

- P.P. Power, S.C. Shoner, Angew. Chem., Int. Ed. Engl. 30 (1991) 330.
- [2] I.G. Dance, Polyhedron 5 (1986) 1037.

- [3] P.G. Blower, J.R. Dilworth, Coord. Chem. Rev. 76 (1987) 121.
- [4] E.M. Padilla, C.M. Jensen, Polyhedron 10 (1991) 89.
- [5] Y.K. Jim, K. Osakada, K. Sugita, T. Yamamoto, A. Yamamoto, Organometallics 7 (1988) 2182.
- [6] V.K. Jain, G.S. Rao, Inorg. Chim. Acta 127 (1987) 161.
- [7] H.C. Clark, V.K. Jain, G.S. Rao, J. Organomet. Chem. 279 (1985) 181.
- [8] G. Sánchez, F. Ruiz, M.D. Santana, G. García, G. López, J.A. Hermoso, M. Martínez-Ripoll, J. Chem. Soc., Dalton Trans. (1994) 19.
- [9] J. Ruiz, C. Vicente, V. Rodríguez, G. López, Polyhedron 17 (1998) 1503.
- [10] J. Ruiz, N. Cutillas, J. Torregrosa, G. García, G. López, P.A. Chaloner, P.B. Hitchcock, R.M. Harrison, J. Chem. Soc., Dalton Trans. (1994) 2353.
- [11] A. Singhal, V.K. Jain, J. Organomet. Chem. 494 (1995) 75.
- [12] J. Fawcett, W. Henderson, R.D.W. Kemmitt, D.R. Rusell, A. Upreti, J. Chem. Soc., Dalton Trans. (1996) 1897.
- [13] R.G. Hayter, F.S. Humiec, J. Inorg. Nucl. Chem. 26 (1964) 807.
- [14] I.A. Zakharova, Y.L. Gaft, N.T. Kuznetsov, Y.V. Salyn, L.A. Leytes, A.P. Kurbakova, M.M. Kagansky, Inorg. Chim. Acta 47 (1981) 181.
- [15] G.M. Sheldrick, Crystallogr. Comp. 5 (1991) 145.
- [16] G.M. Sheldrick, SHELXL-93, Program for Crystal Structure Refinement, University of Göttingen, 1993.
- [17] W.J. Geary, Coord. Chem. Rev. 7 (1971) 81.
- [18] S. Trofimenko, Inorg. Chem. 10 (1971) 1372.
- [19] G. Sánchez, F. Momblona, M. Sánchez, J. Pérez, G. López, J. Casabó, E. Molins, C. Miravitlles, Eur. J. Inorg. Chem. (1998) 1199.
- [20] U. Amador, E. Delgado, J. Forniés, E. Hernández, E. Lalinde, M.T. Moreno, Inorg. Chem. 34 (1995) 5279.
- [21] N. Nakahara, M. Hirano, A. Fukuoka, S. Komiya, J. Organomet. Chem. 572 (1999) 81.