Synthesis of sulfated and phosphorylated glycopeptides from the carbohydrate-protein linkage region of proteoglycans

Sandrine Rio, Jean-Marie Beau and Jean-Claude Jacquinet *

Laboratoire de Biochimie Structurale, U.R.A. 499, U.F.R. Faculté des Sciences, Université d'Orléans, B.P. 6759, F-45067 Orléans (France)

(Received March 8th, 1993; accepted August 25th, 1993)

ABSTRACT

The synthesis of the tetrasaccharide dipeptide β -D-GlcpA- $(1 \rightarrow 3)$ - β -D-Gal $p4SO_3Na$ - $(1 \rightarrow 3)$ - β -D-Galp- $(1 \rightarrow 4)$ - β -D-Xylp- $(1 \rightarrow 0)$ -L-Ser-Gly was achieved by coupling a suitably protected tetrasaccharide trichloroacetimidate, built up from the nonreducing end by the stepwise addition of monosaccharide units, to the protected dipeptide Z-L-Ser-Gly-OBn. Sulfation at O-4 of the second D-Gal unit and complete deprotection afforded the target molecule in high yield. Its phosphorylated analogue β -D-GlcpA- $(1 \rightarrow 3)$ - β -D-Galp- $(1 \rightarrow 3)$ - β -D-Galp- $(1 \rightarrow 4)$ - β -D-Xyl $p2PO_3Na_2$ - $(1 \rightarrow O)$ -L-Ser-Gly was synthesized by coupling a protected trisaccharide trichloroacetimidate to the 2,3-O-isopropylidene derivative of Z-(D-Xyl-)L-Ser-Gly-OBn. Hydrolysis of the O-isopropylidene group, regioselective acetylation at O-3 of the O-Xyl unit, and phosphorylation at O-2 followed by complete deprotection gave the phosphorylated tetrasaccharide dipeptide in high yield. These structures are found in the carbohydrate-protein linkage region of several proteoglycans.

INTRODUCTION

Proteoglycans are complex macromolecules that consist of a core protein to which a variable number of glycosaminoglycan chains is covalently attached¹. In most mammalian proteoglycans, namely those carrying chondroitin sulfate, dermatan sulfate, heparin, and heparan sulfate, the glycosaminoglycan is assumed to be linked to an L-serine residue of the core through a specific tetrasaccharide sequence² (Fig. 1). Available information on the structure of the core protein suggests that the substituted L-serine is followed³ by a glycine residue.

Recently, a sulfated structure was isolated⁴ from the linkage region of chondroitin 4-sulfate proteoglycan from swarm rat chondrosarcoma. The location of the sulfate group at O-4 of the second D-galactose unit was established by high-field

^{*} Corresponding author.

Fig. 1. The carbohydrate-protein linkage region of proteoglycans. The arrows indicate possible substitution with a sulfate (a) or a phosphate (b) group.

NMR. In addition, phosphate was detected at O-2 of the D-xylose unit in heparan sulfate⁵ and heparin⁶ from bovine lung, and in chondroitin sulfate from swarm rat chondrosarcoma⁷, but the structure was not fully characterized by spectroscopic techniques.

Isolation of glycopeptides from this linkage region by chemical means is complicated by the sensitivity of the xylose-peptide bond to acidic or basic conditions. Thus, chemical synthesis is the alternative of choice for confirming the postulated structures, and providing substrates for relevant biological studies. A synthesis of the sulfated glycotetraosyl-L-serine was recently reported⁸, as well as that of a phosphorylated methyl glycoside⁹ of the common tetrasaccharide.

As a part of a program devoted to synthetic and conformational studies of glycopeptides from the carbohydrate-protein linkage region of proteoglycans^{10,11}, we now report on a versatile approach to the synthesis of both sulfated and phosphorylated tetrasaccharide dipeptides from this region.

RESULTS AND DISCUSSION

The strategy for the synthesis of the sulfated structure involves the preparation of a suitably protected and activated tetrasaccharide block, which is used as a glycosyl donor in a condensation with the L-seryl-glycine dipeptide acceptor, as previously reported¹¹. The oligosaccharide moiety, containing exclusively 1,2-*trans* linkages, was constructed stepwise from the nonreducing end by means of 2-Obenzoylated glycosyl units activated as their trichloroacetimidates¹². Temporary protection was required at O-4 of the second D-galactose unit to allow introduction of the sulfate group after total synthesis of the backbone¹³.

Benzyl O-[2-(trimethylsilyl)ethyl 2,3,4-tri-O-benzoyl- β -D-glucopyranosyluronate]-(1 \rightarrow 3)-2-O-benzoyl-4,6-O-benzylidene- β -D-galactopyranoside 1, the synthesis of which was described elsewhere¹¹, was treated at 100°C in aqueous acetic acid, with 1,2-dimethoxyethane as a co-solvent, to give the crystalline diol 2 (90%). Selective benzoylation at O-6 was readily achieved by treatment of the diol with benzoyl cyanide¹⁴ (1.4 equiv) in 1,2-dichloroethane-pyridine. The mixture, without isolation, was further treated with chloroacetic anhydride to give crystalline 3

(88%), the structure of which was evident from its ¹H NMR spectrum. Catalytic hydrogenation (Pd-C) of 3 in ethyl acetate gave the corresponding free hemiacetal, which was directly treated with trichloroacetonitrile and 1,8-diazabicyclo-[5.4.0]-undec-7-ene to give the imidate 4 (79%). The α configuration of 4 was indicated by the resonance for H-1 at δ 6.35 (J 3.5 Hz). Condensation of 4 (1 equiv) with benzyl 2,4,6-tri-O-benzoyl- β -D-galactopyranoside¹¹ (5, 1.5 equiv) in dry 1,2-dichloroethane at -20° C, in the presence of trimethylsilyl triflate (15 mol % with respect to 4), afforded the crystalline β -linked trisaccharide 6 (81% from 4).

Catalytic hydrogenation of 6 and treatment of the hemiacetal as described for the preparation of 4, gave 85% of the α -imidate 7.

On the basis of our previous studies benzyl 2,3-O-isopropylidene- β -Dxy acceptor. Thus, condensation of 7 (1 equiv) with 8 (1.8 equiv), as described for the preparation of 6, gave the expected tetrasaccharide derivative, which on mild acid hydrolysis (aqueous acetic acid) of the O-isopropylidene group and conventionnal benzoylation of the resulting diol furnished 9 (77% from 7). The ¹H NMR spectrum of 9 showed signals at δ 4.68 and 4.62 (2 Gal H-1), as well as signals at δ 5.49 and 5.18 attributed by spin decoupling experiments to H-3 and H-2, respectively, of a 2,3-di-O-benzoylated D-xylopyranose unit. This proved that glycosylation took place at O-4, and indicated that no migration of the O-isopropylidene group had occurred during the glycosylation reaction. The J values $(J_{1,2} 5.0, J_{2,3} = J_{3,4} = 6.5 \text{ Hz})$ observed for the xylosyl residue in 9 suggested a significant departure from the ${}^{4}C_{1}$ conformation in solution. Catalytic hydrogenation of 9, and treatment of the hemiacetal as described above gave 88% of the imidate 10 as an α,β mixture which could be separated on silica gel. The structure of the major, α anomer was evident from its ¹H NMR spectrum. Examination of the J values for the β anomer ($J_{1,2}$ 3.0,

34 $R = CH_2CH_2SiMe_3$

- 35 $R = CH_2CH_2SiMe_3, R^2 = R^3 = H$
- 36 $R = CH_2CH_2SiMe_3, R^2 = H, R^3 = Ac$

37 $R = CH_2CH_2SiMe_3, R^2 = PO(OBn)_2, R^3 = Ac$

 $J_{2,3} = J_{3,4} = 4.0$ Hz) strongly suggested a significant change of the conformation in solution. These values accord with those previously reported¹¹ for similar structures, and are closed to those listed¹⁵ for O-benzoylated derivatives of D-xylose that adopt the ${}^{1}C_{4}$ conformation.

Glycosylation of the dipeptide N-benzyloxycarbonyl-L-serylglycine benzyl ester¹⁰ (11, 2 equiv) with the imidate 10 (1 equiv) in dry dichloromethane at -20° C, with trimethylsilyl triflate (15 mol % with respect to 10) as a catalyst gave 12 (86% from 10). The ¹H NMR spectrum of 12 accorded with the expected structure, and showed a signal at δ 5.11 characteristic for H-2 of a β -linked D-xylose. The H-1 signal, in the overcrowded region of the spectrum, was not identified.

Treatment of 12 with thiourea in ethanol-pyridine gave the alcohol 13 (84%). The ¹H NMR spectrum * of 13 contained, inter alia, a multiplet at δ 4.22

^{*} When two galactose residues are present and need to be distinguished, unprimed locants are assigned to the reducing unit, or the unit nearer the reducing end, and primed locants to the unit nearer the nonreducing end.

attributed by spin-decoupling experiments and exchange with D_2O to Gal H-4'. Partial deprotection of 13 was achieved through removal of the 2-(trimethylsilyl)ethyl group (Bu₄NF in dry tetrahydrofuran at 0°C), followed by catalytic hydrogenation (Pd-C) and selective N-acetylation¹⁶ of the resulting free amine (acetic anhydride in N,N-dimethylformamide). Treatment with an ion-exchange resin (Na⁺ form) gave the disodium salt 14 (63% overall yield), the structure of which was confirmed by its ¹H NMR spectrum. It should be noted that attempted selective N-acetylation of the free amino group of the L-serine residue with acetic anhydride in aqueous ethyl acetate-methanol led to extensive formation of methyl esters of the uronic acid and/or glycine moieties, probably through acid-catalyzed esterification with methanol. These methyl esters could not be cleaved by treatment with lithium iodide in refluxing sym-collidine¹⁷, or with lithium hydroperoxide¹⁸ at low temperature, without extensive degradation of the molecule.

Attempted O-sulfation (sulfur trioxide-trimethylamine complex in dry N,N-dimethylformamide at 50°C) of the disodium salt of 14 was unsuccessful. The use of a large excess of reagent or a prolonged reaction time led to intractable mixtures. However, O-sulfation of the corresponding free acid under the same conditions proceeded smoothly, and gave 15, isolated as its trisodium salt, in 89% yield. The very poor solubility of the salt 14, or a possible dramatic change in the spatial arrangment of the molecule due to the presence of an ionized carboxyl group on the uronic acid residue, could explain this absence of reaction. Nevertheless, O-sulfation of similar structures (uronyl salts) has been reported¹³. Comparison of the ¹H NMR spectra of 15 and 14 (CD₃OD) showed the expected¹³ downfield shift (0.73 ppm) of the signal for Gal H-4' in 15.

Final deprotection of 15 was achieved through hydrazinolysis¹⁹ in methanol to give the target molecule 16 (85%). No loss or migration of the sulfate group was observed in this transformation.

The unsubstituted tetrasaccharide dipeptide 18 (Na salt) was prepared by selective N-acetylation (acetic anhydride in water at pH ~ 8.5) of the amino group in 17 (ref 11) to give a model for NMR comparison. The ¹H NMR spectrum of 16 is in complete agreement with the postulated structure, and the NMR data agree, at least for the tetrasaccharide moiety, with those reported⁴ for naturally occurring samples. Sulfation at Gal O-4' caused the expected¹³ downfield shift (0.6 ppm) of the signal for Gal H-4' in 16, compared with its nonsulfated analogue 18. The ¹³C NMR spectrum of 16 (Table I) confirms the structure, and shows the expected downfield shift (7.6 ppm) of the signal for Gal C-4', as well as the upfield shift (4.8 ppm) of the signal for Gal C-3'.

In planning the synthesis of the phosphorylated analogue, we first intended to use a protected phosphate group as a stereocontrolling auxiliary at O-2 of the D-xylose unit of the activated tetrasaccharide intermediate, and to condense this latter with dipeptide 11. However, preliminary experiments with several 2-O-phosphorylated derivatives of D-xylose, under various activation conditions, showed that

Carbon		Chemical shifts (ppm) ^a			
atom		Unsubstituted 18	4-Sulfate 16	2-Phosphate 33	2-Phosphate 38
Ser	a-CH	53 75	53 77	53.86	53.86
	B-CH	68.30	68.64	68.94	68.31
	N-COCH ₃	22.14	22.13	22.19	22.17
Gly	CH ₂	43.67	43.24	43.71	43.33
Xyl	C-1	103.26	103.13	102.08	102.15
	C-2	72.94	72.95	76.68	76.87
	C-3	74.01	74.02	73.38	73.41
	C-4	76.75	76.91	75.95	75.95
	C-5	63.24	63.24	62.77	62.83
Gal	C-1	101.64	101.67	101.87	101.52
	C-2	70.42	71.28	70.87	70.43
	C-3	82.66	82.41	72.89	82.61
	C-4	69.33	69.28	69.27	69.28
	C-5	75.19	75.21	75.56	75.20
	C-6	61.32	61.33	61.34	61.31
Gal	C-1′	104.20	104.33		104.20
	C-2'	70.10	70.12		70.06
	C-3′	82.26	77.45		82.23
	C-4′	68.72	76.31		68.76
	C-5′	75.06	74.72		75.02
	C-6′	61.23	61.21		61.22
Gl¢A	C-1	103.86	103.23		103.82
	C-2	73.43	73.35		73.41
	C-3	75.58	75.61		75.57
	C-4	72.03	72.07		72.00
	C-5	76.42	76.70		76.30
	C-6	175.90	175.57		175.75

TA	BL	Æ	I

¹³C NMR data for synthetic glycopeptides (Na salts)

^a In D₂O at 27°C; quoted in ppm from external Me₄Si, measured from internal acetone (30.50 ppm).

this approach was not realistic. We thus decided to take advantage of the versatility of 2,3-O-isopropylidene-D-xylosides. A retrosynthetic analysis led us to design a glucosyluronic-galactosyl-galactosyl donor, and a 2,3-O-isopropylidene derivative of D-Xyl-L-Ser-Gly as an acceptor. After stereocontrolled coupling and mild acid hydrolysis, regioselective substitution at O-2 of the corresponding diol could be studied. A similar synthon has already been reported for the preparation of a galactosyl-galactosyl-xylosyl-L-serine glycopeptide²⁰, but the preparation of the xylosyl-L-serine acceptor (13 steps from D-arabinose) was rather lengthy.

Our novel short synthesis of acceptor 25 started from D-xylose. Treatment of 1,2,3,4-tetra-O-chloroacetyl- α -D-xylopyranose²¹ (19) with titanium(IV) chloride (1.2 equiv) in dichloromethane gave 95% of the unstable α -chloride 20. Condensation

of 20 (1 equiv) with dipeptide 11 (1.2 equiv) in dry 1,2-dichloroethane at 0°C, with silver triflate (2 equiv) as a promoter, gave the crystalline β -linked glycopeptide 22 (68%), together with the α isomer 21 (19%), the structures of which were evident from their ¹H NMR spectra. This rather low stereocontrolling power of the chloroacetate ester group in glycosylation reactions with soluble silver salts was recently reported²¹. Attempted glycosylation with insoluble silver silicate²² as a promoter led essentially to the formation of complex imidates²³, resulting from attack by the peptide amidic carbonyl oxygen at the anomeric center of the sugar. Treatment of 22 with an excess of thiourea gave crystalline 23 (85%), without any undesired side reaction in the peptide moiety. Protection of 23 was achieved through treatment with 2-methoxypropene in N,N-dimethylformamide, with camphorsulfonic acid as a catalyst. The subsequent cleavage of the mixed acetal²⁴ with methanol at 0°C yielded the crystalline 2,3-O-isopropylidene derivative 25 (65%), along with its 3,4-O-isopropylidene isomer 24 (20%).

The suitability of 25 as a glycosyl acceptor was first tested in a synthesis of a model disaccharide-peptide. Condensation of 25 (1 equiv) with 2,3,4,6-tetra-O-benzoyl- α -D-galactopyranosyl trichloroacetimidate¹⁰ (26, 1.2 equiv), as described for the preparation of 12, gave 27 (75%), confirmed by its ¹H NMR spectrum. Mild hydrolysis (aqueous acetic acid) of 27 gave the diol 28 (94%). The ¹H NMR spectrum of 28, recorded in Me_2SO-d_6 , was in general agreement with the expected structure, and it showed multiplets at δ 3.18 and 2.92 that could be attributed by spin decoupling experiments and exchange with D₂O to Xyl H-3 and H-2, respectively. The attempted selective phosphorylation or acylation of the diol 28 led to complex mixtures. However, regioselective acylation could be readily achieved through the tin procedure²⁵. Treatment of the 2,3-O-dibutylstannylene derived of 28 with chloroacetyl chloride (1.1 equiv) led to the formation of the 2-chloroacetate 29 as a major product, whereas reaction with the corresponding anhydride (1.1 equiv) gave essentially the 3-chloroacetate 30 (75%). Similar treatment with acetic anhydride gave the 3-acetate 31 (63%). Treatment of 31 with dibenzyl N, N-diisopropylphosphoramidite²⁶ and 1-H-tetrazole in dichloromethane gave the corresponding phosphite, which was oxidized²⁶ in situ with *m*-chloroperbenzoic acid to give the 2-phosphate 32 in 90% overall yield. Examination of the ¹H NMR spectrum of 32 showed, in the signal for Xyl H-2, an additional coupling, ${}^{3}J_{HP} = 9.0$ Hz.

Deprotection of 32 was achieved through catalytic hydrogenation (Pd-C), followed by ion-exchange chromatography on Sephadex SP-C25 (Na⁺), N-acetylation, and hydrazinolysis, as described before, to give the glycopeptide 33, isolated as its trisodium salt (72% from 32). The ¹H NMR spectrum of 33 is in full agreement with the expected structure, including the additional coupling ${}^{3}J_{H,P} = 9.0$ Hz in the signal for Xyl H-2. Phosphorylation at O-2 caused a downfield shift (0.5 ppm) of the signal for Xyl H-2, compared with that of the nonphosphorylated structure 18. The ¹³C NMR spectrum (Table I) also accords with the structure, and shows the additional couplings ${}^{2}J_{C,P} = 6.0$ and ${}^{3}J_{C,P} = 3.0$ Hz in the signals of Xyl C-2 and C-3, respectively. The low value (3.0 Hz) observed for this ${}^{3}J_{C,P}$ indicates a *gauche* relationship between C-3 and the P atom. Phosphorylation at O-2 caused a downfield shift (3.7 ppm) of the signal for Xyl C-2, and upfield shifts (1.1 and 0.6 ppm) of the signals for Xyl C-1 and C-3, respectively, compared with those observed for **18**.

The synthesis of the phosphorylated tetrasaccharide dipeptide **38** was then accomplished as follows. The crucial coupling between the trisaccharide imidate¹¹ (**34**, 1 equiv) and **25** (1.25 equiv), as described for the preparation of **12**, followed by treatment of the crude mixture with aqueous acetic acid, gave the diol **35** (79%). No α isomer was detected. The ¹H NMR spectrum of **35**, recorded in Me₂SO-d₆, agreed with the expected structure, and the same argument as described above for the diol **28** confirmed that the glycosylation occurred at O-4. Regioselective acetylation of **35** at O-3 was achieved through the tin procedure, as described for **31**, to give **36** (81%), the structure of which was confirmed by ¹H NMR spectroscopy. Phosphorylation of **36**, as described for the preparation of **32**, gave **37** (91%), the ¹H NMR spectrum of which showed the additional coupling ³J_{H,P} = 9.0 Hz in the signal for Xyl H-2.

Final deprotection was achieved through cleavage of the 2-(trimethylsilyl) ethyl ester, catalytic hydrogenation followed by ion-exchange chromatography, N-acetylation, and hydrazinolysis, essentially as already described, to give the target molecule **38** (64% from **37**). The ¹H NMR spectrum of **38** is in complete agreement with the expected structure, including the additional coupling ${}^{3}J_{H,P} = 9.0$ Hz in the signal for Xyl H-2. Phosphorylation at O-2 caused a significant downfield shift (0.55 ppm) of the signal for Xyl H-2, compared with that of the unsubstituted analogue **18**. The ¹³C NMR spectrum (Table I) also accords with the structure, and shows the characteristic coupling ${}^{2}J_{C,P} \sim 5$ Hz in the signal for Xyl C-2. Noticeable also is the downfield shift (3.93 ppm) of the signal for Xyl C-2, and the upfield shifts (1.1 and 0.6 ppm) of the signals for Xyl C-1 and C-3, respectively.

In conclusion, stereocontrolled and high-yielding syntheses of the substituted tetrasaccharide dipeptides 16 and 38 are reported. These compounds, obtained in reasonable amounts, are currently being evaluated in biological and conformational studies.

EXPERIMENTAL

General methods. — Melting points were determined in capillary tubes with a Büchi apparatus and are uncorrected. Optical rotations were measured at 20–25°C with a Perkin–Elmer Model 141 polarimeter. The ¹H (300 MHz) and ¹³C (75.4 MHz) NMR spectra were recorded at 300 K with a Bruker AM-300 WB spectrometer. Chemical shifts (δ) are given from the signal of internal Me₄Si unless otherwise stated. The purity of the products was checked by TLC on Silica Gel F₂₅₄ Merck, with detection by charring with H₂SO₄. Flash-column chromatography was performed on Silica Gel Merck, 40–63 μ m. Elemental analyses were performed by

the Service Central de Microanalyse du Centre National de la Recherche Scientifique (Vernaison, France).

Benzyl O-[2-(trimethylsilyl)ethyl 2,3,4-tri-O-benzoyl-β-D-glucopyranosyluronate]-(1 → 3)-2-O-benzoyl-β-D-galactopyranoside (2).—A solution of benzyl O-[2-(trimethylsilyl)ethyl 2,3,4-tri-O-benzoyl-β-D-glucopyranosyluronate]-(1 → 3)-2-Obenzoyl-4,6-O-benzylidene-β-D-galactopyranoside¹¹ (1, 2.36 g, 2.25 mmol) in 1,2-dimethoxyethane (40 mL), AcOH (120 mL), and water (50 mL) was stirred at 100°C for 40 min then concentrated, and the residue was crystallized from EtOAc to give 2 (1.96 g, 90%); mp 236-237°C; $[\alpha]_D - 5^\circ$ (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 7.50 (m, 25 H, 5 Ph), 5.79 (t, 1 H, $J_{2,3} = J_{3,4} = 9.0$ Hz, GlcA H-3) 5.68 (t, 1 H, $J_{4,5} 9.0$ Hz, GlcA H-4), 5.58 (dd, 1 H, $J_{1,2} 8.0, J_{2,3} 10.0$ Hz, Gal H-2), 5.47 (dd, 1 H, $J_{1,2} 7.0$ Hz, GlcA H-2), 5.03 (d, 1 H, GlcA H-1), 4.72 (ABq, 2 H, OCH₂Ph), 4.54 (d, 1 H, Gal H-1), 4.31 (d, 1 H, GlcA H-5), 4.27 (m, 1 H, $J_{3,4} 3.5$ Hz, Gal H-4), 3.97 (dd, 1 H, Gal H-3), 3.12 (br s, 1 H, Gal HO-4), 2.36 (br s, 1 H, Gal HO-6), 0.74 (m, 2 H, CH₂Si), and -0.07 (s, 9 H, SiMe₃). Anal. Calcd for C₅₂H₅₄O₁₆Si: C, 64.85; H, 5.65. Found: C, 64.91; H, 5.38.

Benzyl O-[2-(trimethylsilyl)ethyl 2,3,4-tri-O-benzoyl- β -D-glucopyranosyluronate]- $(1 \rightarrow 3)$ -2,6-di-O-benzoyl-4-O-chloroacetyl- β -D-galactopyranoside (3).—Benzoyl cyanide in anhyd CH₂Cl₂ (1.0 M, 1.26 mL) was added to a solution of 2 (900 mg, 0.9 mmol) in 1,2-dichloroethane (5 mL) and pyridine (5 mL), and the mixture was stirred overnight at room temperature, then cooled to 0°C. 4-Dimethylaminopyridine (80 mg) and chloroacetic anhydride (480 mg, 2.8 mmol) were added and the mixture was stirred at 0°C for 30 min. Ice-cold water (1 mL) was added, and the mixture was stirred for 15 min at 0°C, then diluted with CH₂Cl₂ (100 mL), washed with water, satd aq NaHCO₃, and water, dried (MgSO₄), and concentrated. The residue was eluted from a column of silica gel (50 g) with 15:1 toluene-EtOAc to give 3 (940 mg, 88%); mp 203-204°C (from EtOAc-hexane); $[\alpha]_D = 10^\circ$ (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 7.58 (m, 30 H, 6 Ph), 5.73 (dd, 1 H, $J_{3,4}$ 3.5, $J_{4,5}$ 1.0 Hz, Gal H-4), 5.68 (m, 2 H, GlcA H-3 and H-4), 5.49 (dd, 1 H, J_{1.2} 8.0, J_{2.3} 10.0 Hz, Gal H-2), 5.37 (dd, 1 H, J_{1,2} 7.5, J_{2,3} 9.5 Hz, GlcA H-2), 4.91 (d, 1 H, GlcA H-1), 4.56 (dd, 1 H, J_{5,6a} 7.5, J_{6a,6b} 11.5 Hz, Gal H-6a), 4.41 (d, 1 H, Gal H-1), 4.42 (dd, 1 H, J_{5,6b} 6.0 Hz Gal H-6b), 4.30 (ABq, 2 H, COCH₂Cl), 0.77 (m, 2 H, CH_2Si), and -0.06 (s, 9 H, SiMe₃). Anal. Calcd for $C_{61}H_{59}ClO_{18}Si$: C, 64.06; H, 5.20. Found: C, 63.83; H, 5.17.

O-[2-(Trimethylsily)ethyl 2,3,4-tri-O-benzoyl-β-D-glucopyranosyluronate]-(1 → 3)-2,6-di-O-benzoyl-4-O-chloroacetyl- α -D-galactopyranosyl trichloroacetimidate (4). —A solution of 3 (1.28 g, 1.12 mmol) in EtOAc (20 mL) was hydrogenated in the presence of 10% Pd-C (500 mg) for 16 h, then filtered and concentrated. A mixture of the residue, trichloroacetonitrile (1.12 mL, 11.2 mmol), and 1,8-di-azabicyclo[5.4.0]undec-7-ene (42 μ L, 0.28 mmol) in CH₂Cl₂ (10 mL) was stirred for 15 min at room temperature, then directly eluted from a column of silica gel (80 g) with 15:1 toluene-EtOAc containing 0.1% of Et₃N, to give 4 (1.06 g, 79%); $[\alpha]_{\rm D}$ + 54° (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 8.50 (s, 1 H, C=NH), 7.64 (m, 25 H, 5 Ph), 6.65 (d, 1 H, $J_{1,2}$ 3.5 Hz, Gal H-1), 5.92 (dd, 1 H, $J_{3,4}$ 3.5, $J_{4,5}$ 1.0 Hz, Gal H-4), 5.77 (t, 1 H, $J_{2,3} = J_{3,4} = 9.5$ Hz, GlcA H-3), 5.71 (t, 1 H, $J_{4,5}$ 9.5 Hz, GlcA H-4), 5.56 (dd, 1 H, $J_{2,3}$ 10.0 Hz, Gal H-2), 5.41 (dd, 1 H, $J_{1,2}$ 7.5 Hz, GlcA H-2), 5.11 (d, 1 H, Gal H-1), 4.32 (d, 1 H, GlcA H-5), 4.28 (ABq, 2 H, COC H_2 Cl), 0.81 (m, 2 H, CH_2 Si), and -0.04 (s, 9 H, SiMe₃). Anal. Calcd for $C_{56}H_{53}Cl_4NO_{18}$: C, 56.15; H, 4.46; N, 1.17. Found: C, 56.28; H, 4.35; N, 1.32.

Benzyl O-[2-(trimethylsilyl)ethyl 2,3,4-tri-O-benzoyl- β -D-glucopyranosyluronate]- $(1 \rightarrow 3)$ -O-(2,6-di-O-benzoyl-4-O-chloroacetyl- β -D-galactopyranosyl)- $(1 \rightarrow 3)$ -2,4,6tri-O-benzoyl-B-D-galactopyranoside (6).—A mixture of 4 (0.68 g, 0.57 mmol), benzyl 2,4,6-tri-O-benzoyl- β -D-galactopyranoside¹¹ (5, 0.5 g, 0.85 mmol), and activated powdered 4A molecular sieves (500 mg) in anhyd 1,2-dichloroethane (14 mL) was stirred for 1 h at room temperature under dry Ar, then cooled to -20° C. Trimethylsilyl triflate in toluene (1.0 M, 86 μ L, 0.086 mmol) was added, and the mixture was stirred for 20 min at -20° C. Pyridine (0.28 mL) and trimethylsilyl chloride (0.32 mL, 2.5 mmol) were added and the mixture was stirred for 30 min at 0° c, then filtered, diluted with CH₂Cl₂ (50 mL), washed successively with brine and water, dried (MgSO₄), and concentrated. The residue was eluted from a column of silica gel (80 g) with 10:1 toluene–EtOAc containing 0.1% of Et₃N to give 6 (746 mg, 81%); mp 109–110°C (from hexane–EtOAc); $[\alpha]_D 0^\circ$ (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 5.73 (m, 45 H, 9 Ph), 5.78, 5.61 (2 dd, 2 H, J_{3,4} 3.5, J_{4,5} 1.0 Hz, 2 Gal H-4), 5.58 (t, 1 H, $J_{3,4} = J_{4,5} = 9.5$ Hz, GlcA H-4), 5.54 (t, 1 H, $J_{2,3}$ 9.5 Hz, GlcA H-3), 5.53, 5.18 (2 dd, 2 H, J_{1.2} 8.0, J_{2.3} 10.0 Hz, 2 Gal H-2), 5.23 (dd, 1 H, J_{1.2} 7.5 Hz, GlcA H-2), 4.72 (d, 1 H, GlcA H-1), 4.71, 4.42 (2 d, 2 H, 2 Gal H-1), 4.05 (d, 1 H, GlcA H-5), 4.04 (ABq, 2 H, COC H_2 Cl), 0.74 (m, 2 H, C H_2 Si), and -0.08 (s, 9 H, SiMe₃). Anal. Calcd for C₈₈H₈₁ClO₂₆Si: C, 65.32; H, 5.04. Found: C, 65.29; H, 5.03.

O-[2-(Trimethylsilyl)ethyl 2,3,4-tri-O-benzoyl-β-D-glucopyranosyluronate]-(1 → 3)-O-(2,6-di-O-benzoyl-4-O-chloroacetyl-β-D-galactopyranosyl)-(1 → 3)-2,4,6-tri-O-benzoyl-α-D-galactopyranosyl trichloroacetimidate (7).—Compound 6 (726 mg, 0.45 mmol) was treated as described for the preparation of 4. The mixture was directly eluted from a column of silica gel with 10:1 toluene-acetone containing 0.1% of Et₃N to give 7 (638 mg, 85%); $[\alpha]_D$ + 39° (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 8.42 (s, 1 H, C=NH), 7.55 (m, 40 H, 8 Ph), 6.63 (d, 1 H, J_{1,2} 3.5 Hz, Gal H-1), 5.98 (dd, 1 H, J_{3,4} 4.0, J_{4,5} 1.0 Hz, Gal H-4), 5.68 (dd, 1 H, J_{3,4} 3.5, J_{4,5} 1.0 Hz, Gal H-4'), 5.62 (t, 1 H, J_{3,4} = J_{4,5} = 9.5 Hz, GlcA H-4), 5.61 (dd, 1 H, J_{2,3} 10.0 Hz, Gal H-2), 5.56 (t, 1 H, J_{2,3} 9.5 Hz, GlcA H-3), 5.24 (dd, 1 H, J_{1,2} 7.5 Hz, GlcA H-2), 5.23 (dd, 1 H, J_{1,2} 8.0, J_{2,3} 10.0 Hz, Gal H-2'), 4.89 (d, 1 H, Gal H-1'), 4.77 (d, 1 H, GlcA H-1), 4.09 (d, 1 H, GlcA H-5), 4.07 (ABq, 2 H, COCH₂Cl), 0.77 (m, 2 H, CH₂Si), and -0.06 (s, 9 H, SiMe₃). Anal. Calcd for C₈₃H₇₅Cl₄NO₂₆Si: C, 59.61; H, 4.52; N, 0.84. Found: C, 59.43; H, 4.55; N. 0.98.

Benzyl O-[2-(trimethylsilyl)ethyl 2,3,4-tri-O-benzoyl- β -D-glucopyranosyluronate]-(1 \rightarrow 3)-O-(2,6-di-O-benzoyl-4-O-chloroacetyl- β -D-galactopyranosyl-(1 \rightarrow 3)-O-(2,4, 6-tri-O-benzoyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-2,3,-di-O-benzoyl- β -D-xylopyranoside (9).—A mixture of 7 (0.96 g, 0.57 mmol), benzyl 2,3-O-isopropylidene- β -Dxylopyranoside¹⁰ (8, 290 mg, 1.03 mmol), and activated powdered 4A molecular sieves (500 mg) in anhyd 1.2-dichloroethane (14 mL) was stirred for 1 h at room temperature under dry Ar, then cooled to -20° C. Trimethylsilyl triflate in toluene (1.0 M, 86 μ L) was added, and the mixture was stirred for 30 min at -20° C. Triethylamine (24 μ L) was added, and the mixture was filtered, then concentrated. A solution of the residue in aq AcOH (70%, 30 mL) was stirred at 100°C for 5 min, then cooled, and concentrated. Benzoyl chloride (0.5 mL) and 4-dimethylaminopyridine (50 mg) were added at 0°C to a solution of the residue in anhyd pyridine (12 mL), and the mixture was stirred for 2 h at this temperature. MeOH (0.5 mL) was added, the mixture was diluted with CH₂Cl₂ (100 mL), washed with satd aq NaHCO₃ and water, dried (MgSO₄), and concentrated. The residue was eluted from a column of silica gel with 12:1 toluene-acetone to give 9 (866 mg, 77%); $[\alpha]_{\rm D} = -3.5^{\circ}$ (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 7.56 (m, 55 H, 11 Ph), 5.64, 5.59 (2 dd, 2 H, J_{34} 3.5, J_{45} 1.0 Hz, 2 Gal H-4), 5.58 (t, 1 H, $J_{34} = J_{45} = 9.0$ Hz, GlcA H-4), 5.54 (t, 1 H, $J_{2,3}$ 9.0 Hz, GlcA H-3), 5.49 (t, 1 H, $J_{2,3} = J_{3,4} = 6.5$ Hz, Xyl H-3), 5.38 (dd, 1 H, J_{1,2} 8.0, J_{2,3} 10.0 Hz, Gal H-2), 5.22 (dd, 1 H, J_{1,2} 7.0 Hz, GlcA H-2), 5.18 (dd, 1 H, J_{1,2} 5.0 Hz, Xyl H-2), 5.16 (dd, 1 H, J_{1,2} 8.0, J_{2,3} 10.5 Hz, Gal H-2), 4.72 (d, 1 H, GlcA H-1), 4.68, 4.62 (2 d, 2 H, 2 Gal H-1), 4.65 (d, 1 H, Xyl H-1), 4.60 (ABq, 2 H, OCH₂Ph), 3.99 (ABq, 2 H, COCH₂Cl), 0.73 (m, 2 H, CH_2Si), and -0.08 (s, 9 H, SiMe₃). Anal. Calcd for $C_{107}H_{97}ClO_{32}Si$: C, 65.62; H, 4.99. Found: C, 65.60; H, 4.91.

O-[2-(Trimethylsilyl)ethyl 2,3,4-tri-O-benzoyl-β-D-glucopyranosyluronate]-(1 → 3)-O-(2,6-di-O-benzoyl-4-O-chloroacetyl-β-D-galactopyranosyl)-(1 → 3)-O-(2,4,6-tri-O-benzoyl-β-D-galactopyranosyl)-(1 → 4)-2,3-di-O-benzoyl-α,β-D-xylopyranosyl trichloroacetimidate (10).—Compound 9 (455 mg, 0.23 mmol) was treated as described for the preparation of 4. The mixture was directly eluted from a column of silica gel (35 g) with 7:1 toluene–EtOAc containing 0.1% of Et₃N to give first the β-imidate (113 mg, 28%); $[\alpha]_D$ – 0.6° (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 8.67 (s, 1 H, C=NH), 7.58 (m, 50 H, 10 Ph), 6.17 (d, 1 H, J_{1,2} 3.0 Hz, Xyl H-1), 5.68, 5.65 (2 dd, 2 H, J_{3,4} 3.5, J_{4,5} 1.0 Hz, 2 Gal H-4), 5.63 (t, 1 H, J_{2,3} = J_{3,4} = 4.0 Hz, Xyl H-3), 5.47, 5.42 (2 dd, 2 H, J_{1,2} 8.0, J_{2,3} 10.0 Hz, 2 Gal H-2), 5.28 (dd, 1 H, Xyl H-2), 5.26 (dd, 1 H, J_{1,2} 7.0, J_{2,3} 10.0 Hz, GlcA H-2), 4.74, 4.71 (2 d, 2 H, 2 Gal H-1), 4.73 (d, 1 H, GlcA H-1), 3.94 (ABq, 2 H, COCH₂Cl), 0.72 (m, 2 H, CH₂Si), and -0.08 (s, 9 H, SiMe₃).

Next eluted was the α -imidate (263 mg, 60%); mp 137–138°C (from ethyl ether); [α]_D + 15° (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 8.48 (s, 1 H, C=NH), 7.57 (m, 50 H 10 Ph), 6.48 (d, 1 H, $J_{1,2}$ 3.5 Hz, Xyl H-1), 5.83 (t, 1 H, $J_{3,4} = J_{4,5} = 10.0$ Hz, GlcA H-4), 5.68, 5.60 (2 dd, 2 H, $J_{3,4}$ 3.5, $J_{4,5}$ 1.0 Hz, 2 Gal H-4), 5.53 (dd, 1 H, $J_{2,3}$ 9.5 Hz, GlcA H-3), 5.32, 5.15 (2 dd, 2 H, $J_{1,2}$ 8.0, $J_{2,3}$ 10.0 Hz, 2 Gal H-2), 5.27 (dd, 1 H, $J_{2,3}$ 10.5 Hz, Xyl H-2), 5.22 (dd, 1 H, $J_{1,2}$ 7.5 Hz, GlcA H-2), 4.72 (d, 1 H, GlcA H-1), 4.68, 4.55 (2 d, 2 H, 2 Gal H-1), 4.07 (ABq, 2 H, COC H_2 Cl), 4.03 (d, 1 H, GlcA H-5), 0.72 (m, 2 H, C H_2 Si), and -0.08 (s, 9 H, SiMe₃). Anal. Calcd for $C_{102}H_{91}Cl_4NO_{32}Si \cdot H_2O$: C, 60.33; H, 4.61; N, 0.69. Found: C, 60.15; H, 4.71; N, 0.72.

N-Benzyloxycarbonyl-O-{O-[2-(trimethylsilyl)ethyl 2,3,4-tri-O-benzoyl-B-D-glucopyranosyluronate]-(1 \rightarrow 3)-O-(2,6-di-O-benzoyl-4-O-chloroacetyl- β -D-galactopyranosyl)- $(1 \rightarrow 3)$ -O-(2,4,6-tri-O-benzoyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -(2,3-di-O-benzoyl- β -D-xylopyranosyl)}-L-serylglycine benzyl ester (12).—A mixture of 10 (0.75 g, 0.37 mmol), N-benzyloxycarbonyl-L-serylglycine benzyl ester¹⁰ (11, 287 mg, 0.74 mmol), and activated powdered 4A molecular sieves (500 mg) in anhyd CH₂Cl₂ (15 mL) was stirred for 1 h at room temperature under dry Ar, then cooled to -20° C. Trimethylsilyl triflate in toluene (0.5 M, 112 μ L) was gradually added, and the mixture was stirred for 45 min at -20° C. Triethylamine (16 μ L) was added, and the mixture was filtered, then concentrated. The residue was eluted from a column of silica gel (50 g) with 3:1 toluene-EtOAc to give 12 (717 mg, 86%); $[\alpha]_{D}$ + 3° (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 7.58 (m, 60 H, 12 Ph), 6.77 (t, 1 H, J 5.5 Hz, Gly NH), 5.67, 5.59 (2 dd, 2 H, J_{3.4} 3.5, J_{4.5} 1.0 Hz, 2 Gal H-4), 5.58 (t, 1 H, $J_{34} = J_{45} = 9.5$ Hz, GlcA H-4), 5.53 (dd, 1 H, J_{23} 9.0 Hz, GlcA H-3), 5.35, 5.17 (2 dd, 2 H, J_{1.2} 8.0, J_{2.3} 10.0 Hz, 2 Gal H-2), 5.22 (dd, 1 H, J_{1.2} 7.5 Hz, GlcA H-2), 5.11 (dd, 1 H, J_{1.2} 6.0, J_{2.3} 8.0 Hz, Xyl H-2), 5.04 (ABq, 2 H, OCH₂Ph), 5.00 (s, 2 H, OCH, Ph), 4.72 (d, 1 H, GlcA H-1), 4.68, 4.57 (2 d, 2 H, 2 Gal H-1), 4.02 (ABq, 2 H, COC H_2 Cl), 0.72 (m, 2 H, C H_2 Si), and -0.08 (s, 9 H, SiMe₃). Anal. Calcd for C₁₂₀H₁₁₁ClN₂O₃₇Si · H₂O: C, 63.92; H, 5.05; N, 1.24. Found: C, 63.71; H, 5.10; N, 1.33.

N-Benzyloxycarbonyl-O- $\{O-[2-(trimethylsilyl)ethyl 2,3,4-tri-O-benzoyl-\beta-D-gluco$ pyranosyluronate]- $(1 \rightarrow 3)$ -O-(2,6-di-O-benzoyl- β -D-galactopyranosyl)- $(1 \rightarrow 3)$ -O-(2,6)-di-O-benzoyl- β -D-galactopyranosyl- β -D-galactopyranosyl-4,6-tri-O-benzoyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -(2,3-di-O-benzoyl- β -D-xylopyranosyl)}-L-serylglycine benzyl ester (13).—A mixture of 12 (260 mg, 0.11 mmol) and thiourea (44 mg, 0.6 mmol) in pyridine (1.5 mL) and EtOH (3.5 mL) was stirred at 80° C for 20 h, then cooled, and concentrated. A solution of the residue in CHCl₃ (50 mL) was washed with brine, and water, dried (MgSO₄), and concentrated. The residue was eluted from a column of silica gel (20 g) with 3:1 toluene-EtOAc to give 13 (211 mg, 84%); $[\alpha]_{D}$ + 4° (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 7.52 (m, 60 H, 12 Ph), 6.75 (t, 1 H, J 5.5 Hz, Gly NH), 5.70 (dd, 1 H, J_{34} 3.5, J_{45} 0.6 Hz, Gal H-4), 5.49 (t, 1 H, $J_{2,3} = J_{3,4} = 8.5$ Hz, Xyl H-3), 5.35, 5.23 (2 dd, 2 H, $J_{1,2}$ 8.0, $J_{2,3}$ 10.0 Hz, 2 Gal H-2), 5.31 (dd, 1 H, J_{1,2} 7.5, J_{2,3} 9.0 Hz, GlcA H-2), 5.11 (dd, 1 H, J_{1.2} 6.0 Hz, Xyl H-2), 4.88 (d, 1 H, GlcA H-1), 4.65, 4.54 (2 d, 2 H, 2 Gal H-1), 4.59 (d, 1 H, Xyl H-1), 4.22 (m, 1 H, J_{3,4} 3.5, J_{4,5} 0.8, J_{4,OH} 3.2 Hz, Gal H-4'), 4.19 (d, 1 H, $J_{4.5}$ 9.0 Hz, GlcA H-5), 3.00 (d, 1 H, Gal HO-4'), 0.71 (m, 2 H, CH_2Si), and -0.08 (s, 9 H, SiMe₃). Anal. Calcd for C₁₁₈H₁₁₀N₂O₃₆Si: C, 65.61; H, 5.13; N, 1.30. Found: C, 65.80; H, 4.85; N, 1.34.

N-Acetyl-O-[O-(2,3,4-tri-O-benzoyl- β -D-glucopyranosyluronic acid)-(1 \rightarrow 3)-O-(2,6-di-O-benzoyl- β -D-galactopyranosyl)-(1 \rightarrow 3)-O-(2,4,6-tri-O-benzoyl- β -D-galacto-pyranosyl)-(1 \rightarrow 4)-(2,3-di-O-benzoyl- β -D-xylopyranosyl)]-L-serylglycine, disodium salt (14).—A mixture of 13 (540 mg, 0.25 mmol), and Bu₄NF (261 mg, 1 mmol) in

anhyd THF (8 mL) was stirred for 1 h at 0°C under Ar. The mixture was diluted with CHCl₃ (100 mL), washed with cold 0.1 M HCl, satd aq NH₄Cl, and water, dried (MgSO₄), and concentrated. The residue was hydrogenated in 12:2:1EtOAc-MeOH-water (20 mL) in the presence of 10% Pd-C (300 mg) for 48 h, then filtered, and concentrated. Acetic anhydride (0.5 mL) was added dropwise at 0°C to a solution of the residue in DMF (8 mL), and the mixture was stirred for 10 min at 0°C, then concentrated at < 30°C. The residue was eluted from a column of silica gel (20 g) with 8:2:1 EtOAc–MeOH–water, then from a column (1 \times 20 cm) of Sephadex SP C-25 (Na⁺ form) with the same mixture of solvents to give amorphous hygroscopic 14 (326 mg, 68%); $[\alpha]_D - 5^\circ$ (c 1, MeOH); ¹H NMR (CD₃OD): § 7.62 (m, 50 H, 10 Ph), 5.68 (dd, 1 H, J_{3.4} 3.5, J_{4.5} 0.5 Hz, Gal H-4), 5.63 (t, 1 H, $J_{2,3} = J_{3,4} = 9.5$ Hz, GlcA H-3), 5.58 (t, 1 H, $J_{4,5}$ 9.5 Hz, GlcA H-4), 5.46 (t, 1 H, $J_{2,3} = J_{3,4} = 8.0$ Hz, Xyl H-3), 5.35 (dd, 1 H, $J_{1,2}$ 7.8, $J_{2,3}$ 9.5 Hz, GlcA H-2), 5.32, 5.22 (2 dd, 2 H, J₁₂ 8.0, J_{2.3} 10.0 Hz, Gal H-2 and H-2'), 5.11 (d, 1 H, $J_{1,2}$ 6.5 Hz, Xyl H-2), 5.04 (d, 1 H, GlcA H-1), 4.79, 4.75 (2 d, 2 H, Gal H-1' and H-1), 4.67 (d, 1 H, Xyl H-1), 4.34 (dd, 1 H, J_{3,4} 3.5, J_{4,5} 0.5 Hz, Gal H-4'), 4.28, 4.01 (2 dd, 2 H, Gal H-3 and H-3'), 4.18 (d, 1 H, GlcA H-5), and 1.73 (s, 3 H, NAc). Anal. Calcd for $C_{100}H_{86}N_2Na_2O_{35} \cdot 2H_2O$: C, 61.35; H, 4.63; N, 1.43. Found: C, 61.21; H, 4.75; N, 1.32.

N-Acetyl-O- $[O-(2,3,4-tri-O-benzoyl-\beta-D-glucopyranosyluronic acid)-(1 \rightarrow 3)-O (2,6-di-O-benzoyl-4-O-sulfo-\beta-D-galactopyranosyl)-(1 \rightarrow 3)-O-(2,4,6-tri-O-benzoyl-\beta-D-galactopyranosyl)-(1 \rightarrow 3)-O-(2,4,6-tri-O-benzoyl-galactopyranosyl)-(1 \rightarrow 3)-(1 \rightarrow 3)-(1$ D-galactopyranosyl)- $(1 \rightarrow 4)$ -(2,3-di-O-benzoyl- β -D-xylopyranosyl)]-L-serylglycine, trisodium salt (15). — A solution of 14 (97 mg, 50 μ mol) in 5:2:1 EtOAc-MeOH-water (5 mL) was stirred at room temperature with Amberlite IR-120 (H^+) resin (1 mL) for 20 min, then filtered, concentrated, and dried in vacuo. A mixture of the residue and SO_3 -Me₃N complex (70 mg, 0.5 mmol) in anhyd DMF (2 mL) was stirred for 48 h at 50°C under Ar, then cooled. MeOH (0.1 mL) was added, and the mixture was eluted from a column $(2.5 \times 60 \text{ cm})$ of Sephadex LH-20 with 1:1 CH₂Cl₂-MeOH. The residue was eluted from a column (1×20 cm) of Sephadex SP C-25 (Na⁺) with 5:2:1 EtOAc-MeOH-water to give 15 (90 mg, 89%) $[\alpha]_{D} = -8^{\circ}$ (c 1, MeOH); ¹H NMR (CD₃OD): δ 7.50 (m, 50 H, 10 Ph), 5.69 (t, 1 H, $J_{3,4} = J_{4,5} = 9.5$ Hz, GlcA H-4), 5.65 (dd, 1 H, $J_{3,4}$ 3.5, $J_{4,5}$ 0.8 Hz, Gal H-4), 5.62 (t, 1 H, J_{2,3} 9.5 Hz, GlcA H-3), 5.49 (dd, 1 H, J_{1,2} 8.0 Hz, GlcA H-2), 5.45 (t, 1 H, $J_{2,3} = J_{3,4} = 8.0$ Hz, Xyl H-3), 5.31, 5.14 (2 dd, 2 H, $J_{1,2} = 8.0$, $J_{2,3} = 10.0$ Hz, Gal H-2 and H-2'), 5.11 (dd, 1 H, J_{1.2} 6.5 Hz, Xyl H-2), 5.07 (dd, 1 H, J_{3.4} 3.5, J_{4.5} 0.5 Hz, Gal H-4'), 5.04 (d, 1 H, GlcA H-1), 4.77, 4.69 (2 d, 2 H, Gal H-1' and H-1), 4.68 (d, 1 H, Xyl H-1), 4.25, 4.23 (2 dd, 2 H, Gal H-3' and H-3), 4.17 (d, 1 H, GlcA H-5), and 1.74 (s, 3 H, NAc). Anal. Calcd for $C_{100}H_{85}N_2Na_2O_{38}S \cdot H_2O$: C, 58.82; H, 4.29; N, 1.37. Found: C, 58.61; H, 4.39; N, 1.32.

N-Acetyl-O-[O-(β -D-glucopyranosyluronic acid)-($1 \rightarrow 3$)-O-(4-O-sulfo- β -Dgalactopyranosyl)-($1 \rightarrow 3$)-O- β -D-galactopyranosyl-($1 \rightarrow 4$)- β -D-xylopyranosyl]-L-serylglycine, trisodium salt (16).—A mixture of 15 (168 mg, 82 μ mol) and 98% hydrazine hydrate (2 mL) in MeOH (5 mL) was stirred for 5 h at room tempera-

ture, then cooled to 0°C. Acetone (20 mL) was added cautiously, and the mixture was stirred for 30 min, then concentrated. The resulting syrup was triturated with abs EtOH (3×2 mL), and the residue was eluted from a column (2.3×120 cm) of Sephadex G-10 with water to give amorphous, hygroscopic 16 (70 mg, 85%); $[\alpha]_{\rm D}$ -13° (c 1, H₂O); NMR data: ¹H (D₂O, internal H₂O, δ_{H} 4.754), δ 4.82 (dd, 1 H, J_{3.4} 3.2, J_{4.5} 0.6 Hz, Gal H-4'), 4.81 (d, 1 H, J_{1.2} 7.5 Hz, GlcA H-1), 4.72 (d, 1 H, $J_{1,2}$ 8.0 Hz, Gal H-1'), 4.68 (dd, 1 H, $J_{H\alpha,Ha}$ 5.0, $J_{H\alpha,Hb}$ 5.5 Hz, Ser α -CH), 4.55 (d, 1 H, J_{1.2} 8.0 Hz, Gal H-1), 4.47 (d, 1 H, J_{1.2} 7.6 Hz, Xyl H-1), 4.22 (dd, H, J_{HaHb} 11.0 Hz, Ser β -CHa), 4.21 (dd, 1 H, $J_{3,4}$ 3.2, $J_{4,5}$ 0.8 Hz, Gal H-4), 4.13 (dd, 1 H, J_{4.5eg} 5.0, J_{5ax.5eg} 12.0 Hz, Xyl H-5eq), 4.08 (dd, 1 H, J_{2.3} 10.0 Hz, Gal H-3'), 3.95 (dd, 1 H, Ser β -CHb), 3.86 (s, 2 H, Gly CH₂), 3.75 (d, 1 H, $J_{4.5}$ 9.5 Hz, GlcA H-5), 3.71 (dd, 1 H, $J_{2.3}$ 10.0 Hz, Gal H-2), 3.64 (t, 1 H, $J_{2.3} = J_{3.4} = 9.0$ Hz, Xyl H-3), 3.58 (dd, 1 H, J_{3,4} 9.0 Hz, GlcA H-4), 3.54 (t, 1 H, J_{2,3} 9.0 Hz, GlcA H-3), 3.44 (dd, 1 H, GlcA H-2), 3.43 (dd, 1 H, J_{4.5ax} 10.0 Hz, Xyl H-5ax), 3.37 (dd, 1 H, Xyl H-2), and 2.11 (s, 3 H, NAc); ¹³C (D₂O, internal acetone), see Table I. Anal. Calcd for C₃₀H₄₅N₂Na₃O₂₈S · 3 H₂O: C, 34.75; H, 4.96; N, 2.70. Found: C, 34.61; H, 5.01; N, 2.60.

N-Acetyl-O- $[O-(\beta-D-glucopyranosyluronic acid)-(1 \rightarrow 3)-O-\beta-D-galactopyranosyl (1 \rightarrow 3)$ -O- β -D-galactopyranosyl- $(1 \rightarrow 4)$ - β -D-xylopyranosyl]-L-serylglycine, disodium salt (18).—Glycopeptide¹¹ 17 (16 mg, 20 μ mol) was dissolved in water (2 mL), and the pH of the solution was adjusted to ~8.5 with satd aq NaHCO₃. Acetic anhydride (6 μ L, 60 μ mol) was added, and the pH was maintained at ~8 by additions of 5% aq NaHCO₃. The mixture was stirred for 1 h, then concentrated. The residue was eluted from a column $(2.2 \times 120 \text{ cm})$ of Sephadex G-10 with water to give amorphous, hygroscopic 18 (15 mg, 88%); $[\alpha]_D = 8^\circ (c \ 1, H_2O)$; NMR data: ¹H (D₂O, internal H₂O), δ 4.71 (d, 1 H, $J_{1,2}$ 7.5 Hz, GlcA H-1), 4.70, 4.57 (2 d, 2 H, $J_{1,2}$ 8.0 Hz, 2 Gal H-1), 4.69 (dd, 1 H, $J_{H\alpha,Ha}$ 5.0, $J_{H\alpha,Hb}$ 4.5 Hz, Ser α -CH), 4.47 (d, 1 H $J_{1,2}$ 7.5, Xyl H-1), 4.22 (dd, 1 H, $J_{\text{Ha,Hb}}$ 11.0, Ser β -CHa), 4.21 (dd, 2 H, J_{3,4} 3.4, J_{4,5} 0.6 Hz, 2 Gal H-4), 4.14 (dd, 1 H, J_{4,5eq} 5.0, J_{5ax,5eq} 12.0 Hz, Xyl H-5eq), 3.96 (dd, 1 H, Ser β-CHb), 3.88 (m, 1 H, J_{3,4} 9.0, J_{4,5ax} 10.0 Hz, Xyl H-4), 3.82 (s, 2 H, Gly CH₂), 3.74 (d, 1 H, J_{4.5} 9.5 Hz, GlcA H-5), 3.72, 3.68 (2 dd, 2 H, J_{2.3} 10.0 Hz, 2 Gal H-2), 3.63 (t, 1 H, J_{2.3} 9.0 Hz, Xyl H-3), 3.55 (m, 2 H, GlcA H-3, H-4), 3.45 (dd, 1 H, J_{2.3} 9.0 Hz, GlcA H-2), 3.43 (dd, 1 H, Xyl H-5ax), 3.37 (dd, 1 H, Xyl H-2), and 2.12 (s, 3 H, NAc); ¹³C (D₂O, internal acetone), see Table I.

Crude 2,3,4-tri-O-chloroacetyl- α -D-xylopyranosyl chloride (20).—Titanium(IV) chloride (0.32 mL, 2.9 mmol) was added to a solution of 1,2,3,4-tetra-O-chloro-acetyl- α -D-xylopyranose²¹ (19, 1.1 g, 2.4 mmol) in anhyd CH₂Cl₂ (8 mL), and the mixture was stirred for 4 h at room temperature, then diluted with cold CH₂Cl₂ (100 mL), washed with ice-cold water, brine, and water, dried (MgSO₄), and concentrated. The residue was quickly eluted from a column of silica gel (40 g) with 3:1 hexane-EtOAc to give unstable syrupy 20 (912 mg, 95%); [α]_D + 120° (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 6.28 (d, 1 H, $J_{1,2}$ 4.5 Hz, H-1), 5.66 (dd, 1 H, $J_{2,3}$ 10.5, $J_{3,4}$ 10.0 Hz, H-3), 5.15 (m, 1 H $J_{4,5eg}$ 6.5, $J_{4,5ax}$ 11.0 Hz, H-4), 4.09 (dd, 1 H,

 $J_{5ax,5eq}$ 12.0 Hz, H-5eq), 4.08, 4.05, 4.03 (3 s, 6 H, 3 COC H_2 Cl), and 4.00 (dd, 1 H, H-5ax).

N-Benzyloxycarbonyl-O-(2,3,4-tri-O-chloroacetyl-α- (21) and -β-D-xylopyranosyl)-L-serylglycine benzyl ester (22).—A mixture of freshly prepared 20 (1.03 g, 2.59 mmol), peptide¹⁰ 11 (1.2 g, 3.11 mmol), and activated powdered 4A molecular sieves (1 g) in anhyd 1,2-dichloroethane (22 mL) was stirred for 30 min at room temperature under Ar, then cooled to 0°C. Silver triflate (1.34 g, 5.18 mmol) was added, and the mixture was stirred for 1 h 30 at 0°C. sym-Collidine (0.68 mL, 5.17 mmol) was added, and the mixture was diluted with CH₂Cl₂ (100 mL), filtered through a pad of Celite 545, washed with 5% aq Na₂S₂O₃, satd aq NaHCO₃, and water, dried (MgSO₄), and concentrated. The residue was eluted from a column of silica gel (120 g) with 1:1 hexane–EtOAc to give first 21 (372 mg, 19%); mp 138–139°C (from hexane–EtOAc); $[\alpha]_D + 69°$ (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 7.36 (m, 10 H, 2 Ph), 6.78 (t, 1 H, J 5.5 Hz, Gly NH), 5.54 (t, 1 H, J_{2,3} = J_{3,4} = 10.0 Hz, H-3), 5.18 (d, 1 H, J_{1,2} 3.5 Hz, H-1), 4.08, 4.06, and 4.00 (3 s, 6 H, 3 COCH₂Cl). Anal. Calcd for C₃₁H₃₃Cl₃N₂O₁₃: C, 49.78; H, 4.45; N, 3.74.

Next eluted was **22** (1.32 g, 68%); mp 102–103° (from hexane–EtOAc); $[\alpha]_D$ – 10.5° (c 1, CHCl₃); ¹H NMR (Me₂SO-d₆): δ 8.42 (t, 1 H, J 5.5 Hz, Gly NH), 7.50 (d, 1 H, J 8.5 Hz, Ser NH), 7.46 (m, 10 H, 2 Ph), 5.23 (t, 1 H, $J_{2,3} = J_{3,4} = 8.0$ Hz, H-3), 5.13, 5.05 (2 s, 4 H, 2 OCH₂Ph), 4.92 (m, 1 H, $J_{4,5eq}$ 5.0, $J_{4,5ax}$ 8.0 Hz, H-4), 4.88 (dd, 1 H, $J_{1,2}$ 6.0 Hz, H-2), 4.78 (d, 1 H, H-1), 4.38, 4.34, 4.32 (3 s, 6 H, 3 COCH₂Cl), 4.03 (dd, 1 H, $J_{5ax,5eq}$ 12.0 Hz, H-5eq), and 3.54 (dd, 1 H, H-5ax). Anal. Calcd for C₃₁H₃₃Cl₃N₂O₁₃: C, 49.78; H, 4.45; N, 3.74. Found: C, 50.03; H, 4.53; N, 3.99.

N-Benzyloxycarbonyl-O-β-D-xylopyranosyl-L-serylglycine benzyl ester (23).—A mixture of 22 (1.32 g, 1.77 mmol) and thiourea (810 mg, 10.6 mmol) in pyridine (4.5 mL) and EtOH (10.5 mL) was stirred at 80°C for 20 h, then cooled, and concentrated. A solution of the residue in EtOAc (100 mL) was washed with water, dried (MgSO₄), and concentrated. The residue was eluted from a column of silica gel (30 g) with 9:1 CH₂Cl₂-MeOH to give 23 (784 mg, 85%); mp 135–136°C (from 2-propanol); $[\alpha]_D$ – 19° (*c* 1, MeOH); ¹H NMR (Me₂SO-*d*₆): δ 8.32 (t, 1 H, *J* 5.5 Hz, Gly NH), 7.47 (d, 1 H, *J* 8.5 Hz, Ser NH), 7.38 (m, 10 H, 2 Ph), 4.10 (d, 1 H, *J*_{1,2} 7.5 Hz, H-1). Anal. Calcd for C₂₅H₃₀N₂O₁₀ · 0.5H₂O: C, 56.92; H, 5.92; N, 5.31. Found: C, 56.99; H, 5.95; N, 5.39.

N-Benzyloxycarbonyl-O-(3,4- (24) and 2,3-O-isopropylidene- β -D-xylopyranosyl)-L-serylglycine benzyl ester (25).—A mixture of 23 (0.74 g, 1.42 mmol) and camphorsulfonic acid (60 mg) in anhyd DMF (6 mL) was stirred at 40°C with the exclusion of moisture. 2-Methoxypropene (0.35 mL, 3.5 mmol) was added portionwise during 1 h. The mixture was then cooled to 0°C, and MeOH (0.5 mL) was added. After 30 min at this temperature, Et₃N (0.5 mL) was added, and the mixture was concentrated. The residue was eluted from a column of silica gel (50 g) with 3:1 EtOAc-hexane containing 0.2% of Et₃N to give first 24 (159 mg, 20%); $[\alpha]_D + 5^\circ$ (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 7.36 (m, 10 H, 2 Ph), 7.07 (t, 1 H, J 5.5 Hz, Gly NH), 6.18 (d, 1 H, J 8.0 Hz, Ser NH), 4.24 (d, 1 H, $J_{1,2}$ 7.0 Hz, H-1), 3.69 (m, 1 H, $J_{2,3}$ 10.0, $J_{2,OH}$ 3.5 Hz, H-2), and 1.43 (s, 6 H, CMe₂). Anal. Calcd for C₂₈H₃₄N₂O₁₀ · 0.5H₂O: C, 59.25; H, 6.22; N, 4.94. Found: C, 59.23; H, 6.06; N, 5.04.

Next eluted was 25 (517 mg, 65%); mp 87–88°C (from hexane–EtOAc) $[\alpha]_D$ + 14.5° (c 1, CHCl₃); ¹H NMR (Me₂SO-d₆): δ 8.42 (t, 1 H, J 6.0 Hz, Gly NH), 7.39 (d, 1 H, J 9.0 Hz, Ser NH), 7.37 (m, 10 H, 2 Ph), 5.38 (d, 1 H, J_{4,OH} 4.5 Hz, HO-4), 5.13 (s, 2 H, OCH₂Ph), 5.04 (ABq, 2 H, OCH₂Ph), 4.66 (d, 1 H, J_{1,2} 7.5 Hz, H-1), 3.82 (dd, 1 H, J_{4,5eq} 5.0, J_{5ax,5eq} 11.5 Hz, H-5eq), 3.73 (m, 1 H, J_{3,4} 9.5, J_{4,5ax} 8.0 Hz, H-4), 3.42 (t, 1 H, J_{2,3} 9.5 Hz, H-3), 3.18 (dd, 1 H, H-2), 3.10 (dd, 1 H, H-5ax), and 1.35 (s, 6 H, CMe₂). Anal. Calcd for C₂₈H₃₄N₂O₁₀: C, 60.21; H, 6.14; N, 5.01. Found: C, 60.33; H, 6.38; N, 4.99.

N-Benzyloxycarbonyl-O-[O-(2,3,4,6-tetra-O-benzoyl-β-D-galactopyranosyl)-(1 → 4)-(2,3-O-isopropylidene-β-D-xylopyranosyl)]-L-serylglycine benzyl ester (27).—A mixture of 25 (378 mg, 0.68 mmol) and 2,3,4,6-tetra-O-benzoyl-α-D-galactopyranosyl trichloroacetimidate¹⁰ (26, 0.6 g, 0.81 mmol) was treated as described for the preparation of 12. The residue was eluted from a column of silica gel (80 g) with 1:1 EtOAc-hexane containing 0.2% of Et₃N to give 27 (577 mg, 75%); $[\alpha]_D$ +58° (c 1, CHCl₃); ¹H NMR (Me₂SO-d₆): δ 8.42 (t, 1 H, J 5.5 Hz, Gly NH), 7.62 (m, 30 H, 6 Ph), 7.38 (d, 1 H, J 8.0 Hz, Ser NH), 5.79 (dd, 1 H, J_{3,4} 3.5, J_{4,5} 1.0 Hz, Gal H-4), 5.78 (dd, 1 H, J_{1,2} 8.0 Hz, Gal H-2), 5.31 (d, 1 H, Gal H-1), 5.11, 5.03 (2 s, 4 H, 2 OCH₂Ph), 4.67 (d, 1 H, J_{1,2} 7.8 Hz, Xyl H-1), 3.62 (t, 1 H, J_{2,3} 9.0 Hz, Xyl H-3), 3.37 (dd, 1 H, Xyl H-2), 1.32, and 1.30 (2 s, 6 H, CMe₂). Anal. Calcd for C₆₂H₆₀N₂O₁₉: C, 65.49; H, 5.32; N, 2.46. Found: C, 65.62; H, 5.42; N, 2.49.

N-Benzyloxycarbonyl-O-[O-(2,3,4,6-tetra-O-benzoyl-β-D-galactopyranosyl)-(1 → 4)-β-D-xylopyranosyl]-L-serylglycine benzyl ester (28).—A solution of 27 (450 mg) in aq AcOH (70%, 20 mL) was stirred at 100°C for 15 min, then cooled, and concentrated. The residue was eluted from a column of silica gel (20 g) with 2:1 EtOAc-hexane to give 28 (411 mg, 94%); $[\alpha]_D$ +69° (c 1, CHCl₃); ¹H NMR (Me₂SO-d₆): δ 8.18 (t, 1 H, J 5.5 Hz, Gly NH), 7.56 (m, 30 H, 6 Ph), 7.33 (d, 1 H, J 8.5 Hz, Ser NH), 5.78 (dd, 1 H, J_{3,4} 4.0, J_{4,5} 1.0 Hz, Gal H-4), 5.68 (dd, 1 H, J_{2,3} 10.5 Hz, Gal H-3), 5.43 (dd, 1 H, J_{1,2} 8.0 Hz, Gal H-2), 5.22 (d, 1 H, Gal H-1), 5.08 (d, 1 H, J_{2,OH} 4.0 Hz, Xyl HO-2), 5.02, 4.94 (2 s, 4 H, 2 OCH₂Ph), 4.91 (d, 1 H, J_{3,OH} 5.0 Hz, Xyl HO-3), 3.96 (d, 1 H, J_{1,2} 7.5 Hz, Xyl H-1), 3.18 (m, 1 H, J_{2,3} 10.0 Hz, Xyl H-3), and 2.92 (m, 1 H, Xyl H-2). Anal. Calcd for C₅₉H₅₆N₂O₁₉: C, 64.59; H, 5.15; N, 2.55. Found: C, 64.68; H, 5.30; N, 2.62.

N-Benzyloxycarbonyl-O-[O-(2,3,4,6-tetra-O-benzoyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-(2-O- (29) and 3-O-chloroacetyl- β -D-xylopyranosyl)]-L-serylglycine benzyl ester (30).—A mixture of 28 (110 mg, 0.1 mmol) and dibutyltin oxide (26 mg, 105 μ mol) was heated for 15 h in refluxing benzene (20 mL) with azeotropic removal of water. Solvent (15 mL) was then slowly distilled at atmospheric pressure, and the mixture was cooled. Chloroacetic anhydride (188 mg, 0.11 mmol) in anhyd benzene (2 mL)

was added at room temperature, and the mixture was stirred for 3 h, then concentrated. The residue was eluted from a column of silica gel (10 g), with 4:3 EtOAc-hexane to give first **29** (15 mg, 13%); $[\alpha]_D$ +67° (c 1, CHCl₃); ¹H NMR (Me₂SO-d₆): δ 5.37 (d, 1 H, J_{3,OH} 5.2 Hz, Xyl HO-3), 4.58 (dd, 1 H, J_{1,2} 7.5, J_{2,3} 9.0 Hz, Xyl H-2), 4.40 (ABq, 2 H, COCH₂Cl), 3.57 (m, 1 H, J_{3,4} 9.0 Hz, Xyl H-3). Anal. Calcd for C₆₁H₅₇ClN₂O₂₀: C, 62.43; H, 4.89; N, 2.39. Found: C, 62.51; H, 4.75; N, 2.21.

Next eluted was **30** (88 mg, 75%); $[\alpha]_D + 36^\circ$ (c 1, CHCl₃); ¹H NMR (Me₂SO-d₆): δ 5.53 (d, 1 H, $J_{2,OH}$ 4.2 Hz, Xyl HO-2), 4.90 (t, 1 H, $J_{2,3} = J_{3,4} = 9.0$ Hz, Xyl (H-3), 4.33 (ABq, 2 H, COCH₂Cl), 4.28 (d, 1 H, $J_{1,2}$ 7.5 Hz, Xyl H-1), and 3.18 (m, 1 H, Xyl H-2). Anal. Calcd for C₆₁H₅₇ClN₂O₂₀: C, 62.43; H, 4.89; N, 2.39. Found: C, 62.31; H, 4.91; N, 2.31.

N-Benzyloxycarbonyl-O-[O-(2,3,4,6-tetra-O-benzoyl-β-D-galactopyranosyl)-(1 → 4)-(3-O-acetyl-β-D-xylopyranosyl)]-L-serylglycine benzyl ester (31).—Compound 28 (110 mg, 0.1 mmol) was treated as described for the preparation of 30, except that Ac₂O (11 µL, 115 µmol) was the reagent added to the dibutylstannylene derivative. The residue was eluted from a column of silica gel (10 g) with 3:2 EtOAc-hexane to give 31 (72 mg, 63%); $[\alpha]_D$ +41° (c 1, CHCl₃); ¹H NMR (Me₂SO-d₆): δ 5.42 (d, 1 H, $J_{2,OH}$ 4.0 Hz, Xyl HO-2), 4.84 (t, 1 H, $J_{2,3} = J_{3,4} = 9.0$ Hz, Xyl H-3), 4.24 (d, 1 H, $J_{1,2}$ 7.5 Hz, Xyl H-1), 3.18 (m, 1 H, Xyl H-2), and 1.94 (s, 3 H, OAc). Anal. Calcd for C₆₁H₅₈N₂O₂₀: C, 64.32; H, 5.13; N, 2.46. Found: C, 64.30; H, 5.18; N, 2.39.

N-Benzyloxycarbonyl-O- $[O-(2,3,4,6-tetra-O-benzoyl-\beta-D-galactopyranosyl)-(1 \rightarrow 0.5)$ 4)-(3-O-acetyl-2-O-dibenzyloxyphosphinyl- β -D-xylopyranosyl)]-L-serylglycine benzyl ester (32).—A mixture of 31 (70 mg, 61 µmol) and 1-H-tetazole (9 mg, 0.12 mmol) in anhyd CH₂Cl₂ (2 mL) was stirred at room temperature under Ar. Dibenzyl N,N-diisopropylphosphoramidite²⁶ (35 mg, 0.1 mmol) in anhyd CH₂Cl₂ (0.25 mL) was added, and the mixture was stirred for 30 min, then cooled to 0°C. m-Chloroperbenzoic acid (85%, 40 mg, 0.2 mmol) was added, the mixture was stirred for 1 h at 0°C, then diluted with CH₂Cl₂ (20 mL), washed with aq 5% Na₂S₂O₃, satd aq NaHCO₃, and water, dried (MgSO₄), and concentrated. The residue was eluted from a column of silica gel (5 g) with 4:3 EtOAc-hexane to give 32 (77 mg, 90%); $[\alpha]_{D} + 27^{\circ} (c \ 1, \text{CHCl}_{3}); {}^{1}\text{H} \text{ NMR} (\text{Me}_{2}\text{SO-}d_{6}): \delta 8.33 (t, 1 \text{ H}, J 5.5 \text{ Hz}, \text{Gly N}H),$ 7.65 (m, 41 H, 8 Ph, Ser NH), 5.87 (dd, 1 H, $J_{3,4}$ 3.5, $J_{4,5}$ 0.8 Hz, Gal H-4), 5.73 (dd, 1 H, J_{2.3} 10.0 Hz, Gal H-3), 5.43 (dd, 1 H, J_{1.2} 8.0 Hz, Gal H-2), 5.17 (t, 1 H, $J_{2,3} = J_{3,4} = 9.0$ Hz, Xyl H-3), 5.00 (m, 8 H, 4 OC H_2 Ph), 4.66 (d, 1 H, $J_{1,2}$ 7.5 Hz, Xyl H-1), 4.09 (m, 1 H, J_{2.P} 9.0 Hz, Xyl H-2), and 1.77 (s, 3 H, OAc). Anal. Calcd for C₇₅H₇₁N₂O₂₃P: C, 64.37; H, 5.11; N, 2.00. Found: C, 64.51; H, 5.06; N, 1.89.

N-Acetyl-O-[O- β -D-galactopyranosyl-(1 \rightarrow 4)-O-(2-O-phosphono- β -D-xylopyranosyl)]-L-serylglycine, trisodium salt (33).—A solution of 32 (90 mg) in 12:2:1 EtOAc-MeOH-water (15 mL) was hydrogenated in the presence of 10% Pd-C (50 mg) for 15 h, then filtered and concentrated. The residue was eluted from a column (1 \times 20 cm) of Sephadex SP-C25 (Na⁺) with 5:2:1 EtOAc-MeOH-water

to give the partially deprotected amino compound as its trisodium salt (65 mg); ¹H NMR (CD₃OD): δ 4.07 (m, 1 H, $J_{1,2}$ 7.5, $J_{2,3} = J_{2,P} = 9.0$ Hz, Xyl H-2). Acetic anhydride (0.1 mL) was added at 0°C to a solution of the amine in DMF (2 mL), and the mixture was stirred for 10 min, then concentrated at $< 30^{\circ}$ C. A mixture of the residue and 98% hydrazine hydrate (2 mL) in MeOH (4 mL) was stirred for 4 h at room temperature, then treated as described for the preparation of 16 to give amorphous, hygroscopic 33 (30 mg, 72% from 32); $[\alpha]_{D} - 30^{\circ}$ (c 1, H₂O); NMR data: ¹H (D₂O, internal H₂O), δ 4.63 (t, 1 H, J 4.0 Hz, Ser α -CH), 4.58 (d, 1 H, $J_{1.2}$ 7.0 Hz, Xyl H-1), 4.51 (d, 1 H, $J_{1.2}$ 8.0 Hz, Gal H-1), 4.29 (dd, 1 H, $J_{H\alpha,Ha}$ 4.0, $J_{\text{Ha,Hb}}$ 10.0 Hz, Ser β -CHa), 4.12 (dd, 1 H, $J_{4,5eq}$ 5.0, $J_{5ax,5eq}$ 12.0 Hz, Xyl H-5eq), 3.95 (dd, 1 H, $J_{3,4}$ 3.2, $J_{4,5}$ 0.6 Hz, Gal H-4), 3.94 (m, 1 H, $J_{3,4} = J_{4,5ax} = 9.0$ Hz, Xyl H-4), 3.87 (m, 1 H, $J_{2,3} = J_{2,P} = 9.0$ Hz, Xyl H-2), 3.82 (t, 1 H, Xyl H-3), 3.81 (s, 2 H, Gly CH₂), 3.67 (dd, 1 H, J_{2.3} 10.0 Hz, Gal H-3), 3.54 (dd, 1 H, Gal H-2), 3.47 (dd, 1 H, Xyl H-5ax) and 2.15 (s, 3 H, NAc); 13 C (D₂O, internal acetone), see Table I. Anal. Calcd for $C_{18}H_{28}N_2Na_3O_{17}P \cdot 2H_2O$: C, 31.77; H, 4.74; N, 4.12. Found: C, 31.62; H, 4.89; N, 4.01.

N-Benzyloxycarbonyl-O-{O-[2-(trimethylsilyl)ethyl 2,3,4-tri-O-benzoyl-B-D-glucopyranosyluronate]- $(1 \rightarrow 3)$ -O-(2, 4, 6-tri-O-benzoyl- β -D-galactopyranosyl)- $(1 \rightarrow 3)$ -O- $(2,4,6-tri-O-benzoyl-\beta-D-galactopyranosyl)-(1 \rightarrow 4)-\beta-D-xylopyranosyl}-L-serylglycine$ benzyl ester (35).—A mixture of 25 (268 mg, 0.48 mmol) and trisaccharide imidate¹¹ 34 (650 mg, 0.38 mmol) was treated as described for the preparation of 12. A solution of the initial product in aq AcOH (70%, 20 mL) was stirred at 100°C for 10 min, then cooled, and concentrated. The residue was eluted from a column of silica gel (60 g) with 2:1 EtOAc-hexane to give syrupy 35 (620 mg, 79% from 34); $[\alpha]_{\rm D}$ + 38° (c 1, CHCl₃); ¹H NMR (Me₂SO-d₆): δ 8.24 (t, 1 H, J 5.5 Hz, Gly NH), 7.50 (m, 56 H, 11 Ph, Ser NH), 5.84, 5.76 (2 dd, 2 H, J_{3.4} 3.5, J_{4.5} 0.8 Hz, 2 Gal H-4), 5.32 (t, 1 H, $J_{2,3} = J_{3,4} = 9.5$ Hz, GlcA H-3), 5.32 (t, 1 H, $J_{4,5}$ 9.5 Hz, GlcA H-4), 5.27 (d, 1 H, J_{1.2} 7.5 Hz, GlcA H-1), 5.24, 5.17 (2 dd, 2 H, J_{1.2} 8.0, J_{2.3} 10.0 Hz, 2 Gal H-2), 5.10, 5.01 (2 s, 4 H, 2 OCH₂Ph), 5.08 (d, 1 H, J_{2.0H} 4.0 Hz, Xyl HO-2), 5.06, 4.91 (2 d, 2 H, 2 Gal H-1), 5.04 (dd, 1 H, GlcA H-2), 4.75 (d, 1 H, J_{3.0H} 4.5 Hz, Xyl HO-3), 4.67 (d, 1 H, GlcA H-5), 4.43, 4.40 (2 dd, 2 H, 2 Gal H-3), 3.91 (d, 1 H, $J_{1,2}$ 7.0 Hz, Xyl H-1), 3.12 (m, 1 H, $J_{2,3} = J_{3,4} = 8.5$ Hz, Xyl H-3), 2.90 (m, 1 H, Xyl H-2), 0.61 (m, 2 H, CH_2Si), and -0.10 (s, 9 H, $SiMe_3$). Anal. Calcd for C₁₁₁H₁₀₆N₂O₃₅Si: C, 64.84; H, 5.16; N, 1.36. Found: C, 64.72; H, 5.21; N, 1.24.

N-Benzyloxycarbonyl-O-{O-[2-(trimethylsilyl)ethyl 2,3,4,-tri-O-benzoyl- β -D-glucopyranosyluronate]-(1 \rightarrow 3)-O-(2,4,6-tri-O-benzoyl- β -D-galactopyranosyl)-(1 \rightarrow 3)-O-(2,4,6-tri-O-benzoyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-3-O-acetyl- β -D-xylopyranosyl)}-L-serylglycine benzyl ester (36).—A mixture of 35 (0.48 g, 233 μ mol) and dibutyltin oxide (63 mg, 252 μ mol) was heated for 10 h in refluxing benzene (60 mL) with azeotropic removal of water. Solvent (40 mL) was then slowly distilled at atmospheric pressure, and the mixture was cooled to room temperature. Acetic anhydride (30 μ L, 315 μ mol) in anhyd benzene (0.5 mL) was added, and the mixture was stirred for 15 h, then concentrated. The residue was eluted from a column of silica gel (40 g) with 7:4 EtOAc-hexane to give **36** (396 mg, 81%); $[\alpha]_D + 22^\circ$ (c 1, CHCl₃); ¹H NMR (Me₂SO-d₆): δ 8.23 (t, 1 H, J 5.5 Hz, Gly NH), 7.45 (m, 56 H, 11 Ph, Ser NH), 5.82, 5.77 (2 dd, 2 H, $J_{3,4}$ 3.5, $J_{4,5}$ 0.8 Hz, 2 Gal H-4), 5.75 (t, 1 H, $J_{2,3} = J_{3,4} = 9.5$ Hz, GlcA H-3), 5.32 (t, 1 H, $J_{4,5}$ 9.5 Hz, GlcA H-4), 5.31 (d, 1 H, $J_{2,OH}$ 4.0 Hz, Xyl HO-2), 5.26 (d, 1 H, $J_{1,2}$ 8.0 Hz, GlcA H-1), 5.17, 5.15 (2 dd, 2 H, $J_{1,2}$ 8.0, $J_{2,3}$ 10.0 Hz, 2 Gal H-2), 5.09, 5.01 (2 s, 4 H, 2 OCH₂Ph 5.04, 4.82 (2 d, 2 H, 2 Gal H-1), 4.67 (d, 1 H, GlcA H-5), 4.66 (t, 1 H, $J_{2,3} = J_{3,4} = 9.0$ Hz, Xyl H-3), 4.11 (d, 1 H, $J_{1,2}$ 7.5 Hz, Xyl H-1), 3.04 (m, 1 H, Xyl H-2), and 1.72 (s, 3 H, OAc). Anal. Calcd for C₁₁₃H₁₀₈N₂O₃₆Si: C, 64.68; H, 5.19; N, 1.33. Found: C, 64.71; H, 5.08; N, 1.30.

N-Benzyloxycarbonyl-O{O-[2-(trimethylsilyl)ethyl 2,3,4,-tri-O-benzoyl-β-D-glucopyranosyluronate]-(1 → 3)-O-(2,4,6-tri-O-benzoyl-β-D-galactopyranosyl)-(1 → 3)-O-(2,4,6-tri-O-benzoyl-β-D-galactopyranosyl)-(1 → 4)-(3-O-acetyl-2-O-dibenzyloxyphosphinyl-β-D-xylopyranosyl)}-L-serylglycine benzyl ester (37).—Compound 36 (453 mg, 216 µmol) was treated exactly as described for the preparation of 32. The residue was eluted from a column of silica gel (40 g) with 4:3 EtOAc-hexane to give 37 (463 mg, 91%); $[\alpha]_D$ + 17° (c 1, CHCl₃); ¹H NMR (Me₂SO-d₆): δ 8.30 (t, 1 H, J 5.5 Hz, Gly NH), 7.45 (m, 66 H, 13 Ph, Ser NH), 5.82, 5.76 (2 dd, 2 H, J_{3,4} 3.5, J_{4,5} 0.8 Hz, 2 Gal H-4), 5.74 (t, 1 H, J_{2,3} = J_{3,4} = 9.5 Hz, GlcA H-3), 5.30 (t, 1 H, J_{4,5} 9.5 Hz, GlcA H-4), 5.26 (d, 1 H, J_{1,2} 8.0 Hz, GlcA H-1), 5.16, 5.15 (2 dd, 2 H, J_{1,2} 8.0, J_{2,3} 10.0 Hz, 2 Gal H-2), 5.08 (m, 4 H, 2 OCH₂Ph), 5.06, 4.88 (2 d, 2 H, 2 Gal H-1) 5.03 (dd, 1 H, GlcA H-2), 4.99 (t, 1 H, J_{2,3} = J_{3,4} = 9.0 Hz, Xyl H-3), 4.87 (m, 4 H, 2 OCH₂Ph), 4.67 (d, 1 H, GlcA H-5), 4.54 (d, 1 H, J_{1,2} 7.5 Hz, Xyl H-1), 3.98 (m, 1 H, J_{2,P} 9.0 Hz, Xyl H-2), and 1.56 (s, 3 H, OAc). Anal. Calcd for C₁₂₇H₁₂₁N₂O₃₉PSi: C, 64.68; H, 5.17; N, 1.19. Found: C, 64.54; H, 5.09; N, 1.12.

N-Acetyl-O- $[O-(\beta-D-glucopyranosyluronic acid)-(1 \rightarrow 3)-O-\beta-D-galactopyranosyl (1 \rightarrow 3)$ -O- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -(2-O-phosphono- β -D-xylopyranosyl)]-L-serylglycine, tetrasodium salt (38).—Compound 37 (0.33 g, 0.14 mmol) was treated with $Bu_4 NF$ (130 mg, 0.5 mmol) as described for the preparation of 14. The residue was hydrogenated, treated with ion-exchange resin (Na⁺), N-acetylated, and hydrazinolyzed as ascribed for the preparation of 33. The residue was eluted from a column (2.2×120 cm) of Sephadex G-10 with water to give amorphous, hygroscopic **38** (90 mg, 64% from **37**); $[\alpha]_D - 22^\circ (c \ 1, H_2O)$; NMR data: ¹H (D₂O, internal H₂O), δ 4.71 (d, 1 H, $J_{1,2}$ 7.8 Hz, GlcA H-1), 4.69, 4.56 (2 d, 2 H, $J_{1,2}$ 7.5 Hz, 2 Gal H-1), 4.63 (t, 1 H, $J_{H\alpha,Ha} = J_{H\alpha,Hb} = 3.8$ Hz, Ser α -CH), 4.58 (d, 1 H, $J_{1,2}$ 6.5 Hz, Xyl H-1), 4.29 (dd, 1 H, $J_{\text{Ha,Hb}}$ 10.5 Hz, Ser β -CHa), 4.22, 4.21 (2 dd, 2 H, $J_{3,4}$ 3.2, $J_{4,5}$ 0.8 Hz, 2 Gal H-4), 4.12 (dd, 1 H, $J_{4,5eq}$ 5.0, $J_{5ax,5eq}$ 12.0 Hz, Xyl H-5eq), 3.95 (m, 1 H, $J_{3,4} = J_{4,5ax} = 9.0$ Hz, Xyl H-4), 3.92 (m, 1 H, $J_{2,3} = J_{2,P} = 9.0$ Hz, Xyl H-2), 3.89 (dd, 1 H, Ser β -CH b), 3.85 (s, 2 H, Gly CH₂), 3.75 (d, 1 H, $J_{4.5}$ 9.5 Hz, GlcA H-5), 3.72 (dd, 1 H, J_{2.3} 10.0 Hz, Gal H-2), 3.55 (m, 2 H, GlcA H-3, H-4), 3.47 (dd, 1 H, Xyl H-5ax), 3.44 (dd, 1 H, J_{2.3} 9.0 Hz, GlcA H-2), and 2.14 (s, 3 H, NAc); ${}^{13}C$ (D₂O, internal acetone), see Table I. Anal. Calcd for $C_{30}H_{45}N_2Na_4O_{28}P \cdot 4H_2O$: C, 33.47; H, 4.96; N, 2.60. Found: C, 33.29; H, 5.01; N, 2.41.

REFERENCES

- 1 L. Kjellen and U. Lindahl, Annu. Rev. Biochem., 60 (1991) 443-475.
- 2 U. Lindahl and L. Rodén, in A. Gottschalk (Ed.), *Glycoproteins*, Elsevier, New York, 1972, pp 491-517.
- 3 H.C. Robinson, A.A. Horner, M. Höök, S. Ögren, and U. Lindahl, J. Biol. Chem., 253 (1978) 6687-6693.
- 4 K. Sugahara, I. Yamashina, P. de Waard, H. van Halbeek, and J.F.G. Vliegenthart, J. Biol. Chem., 263 (1988) 10168-10174.
- 5 L.-Å. Fransson, I. Silverberg, and I. Carlstedt, J. Biol. Chem., 260 (1985) 14722-14726.
- 6 L. Rosenfeldt and I. Danishefsky, J. Biol. Chem., 263 (1988) 262-266.
- 7 T.R. Oegema, Jr., E.L. Kraft, G.W. Jourdian, and T.R. Van Valen, J. Biol. Chem., 259 (1984) 1720-1726.
- 8 F. Goto and T. Ogawa, Tetrahedron Lett., 33 (1992) 5099-5102.
- 9 M. Nilsson, J. Westman, and C.-M. Swahn, J. Carbohydr. Chem., 12 (1993) 23-37.
- 10 S. Rio, J.-M. Beau, and J.-C. Jacquinet, Carbohydr. Res., 219 (1991) 71-90.
- 11 S. Rio, J.-M. Beau, and J.-C. Jacquinet, Carbohydr. Res., 244 (1993) 295-313.
- 12 R.R. Schmidt, Angew. Chem. Int. Ed. Engl., 25 (1986) 212-235.
- 13 J.-C. Jacquinet, Carbohydr. Res., 199 (1990) 153-181, and references therein.
- 14 S.A. Abbas and A.H. Haines, Carbohydr. Res., 39 (1975) 358-363.
- 15 F.W. Lichtenthaler and H.J. Lindner, Carbohydr. Res., 200 (1990) 91-99.
- 16 S. Peters, T. Bielfeldt, M. Meldal, K. Bock, and H. Paulsen, J. Chem. Soc., Perkin Trans. 1, (1992) 1163-1171.
- 17 F. Helsinger, J. Schreiber, and A. Eschenmoser, Helv. Chim. Acta, 43 (1960) 113-116.
- 18 J.D. Evanseck, J.F. Blake, and J.C. Jorgensen, J. Am. Chem. Soc., 109 (1987) 2349-2353.
- 19 P. Schultheiss-Reimann and H. Kunz, Angew. Chem. Int. Ed. Engl., 22 (1983) 62-63.
- 20 P.J. Garegg, B. Lindberg, and T. Norberg, Acta Chem. Scand., Ser. B, 33 (1979) 449-452.
- 21 T. Ziegler, Liebigs Ann. Chem., (1990) 1125-1131.
- 22 H. Paulsen and O. Lockhoff, Chem. Ber., 114 (1981) 3102-3114.
- 23 J.-R. Pougny and P. Sinaÿ, Carbohydr. Res., 47 (1976) 69-79.
- 24 R.F. Helm, J. Ralph, and L. Anderson, J. Org. Chem., 56 (1991) 7015-7021.
- 25 S. David and S. Hanessian, Tetrahedron, 41 (1985) 643-663.
- 26 K.L. Yu and B. Fraser-Reid, Tetrahedron Lett., 29 (1988) 979-982.