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ABSTRACT
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N _P=Ph;PO; n-BusSnH
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D /d trans/cis<1/10

R=Me, 11-CgH,3, i-Bu, £Bu, Ph, Bn, PhOCH,

N-Allyl--aminoalkyl phenyl selenides—precursors of 3-aza-5-hexenyl radicals—were prepared by ring opening of N-allylaziridines with
benzeneselenol under acidic conditions or by sodium cyanoborohydride reduction of N-allylimines of a-phenylselenenyl ketones. The effect
of various N-protective groups (acyl, sulfonyl, or phosphinoyl) on diastereoselectivity in thermally or photochemically initiated 3-aza-5-hexenyl
reductive radical cyclization was studied. Whereas N-unprotected derivatives afforded trans-2,4-disubstituded pyrrolidines with good selectivity,
the diphenylphosphinoyl group directed cyclization to occur in a highly cis-selective manner.

The problem of controlling the stereochemical outcome of auxiliaries? or chiral Lewis acidg.In the two former cases,
radical reactions is currently receiving considerable attedtion. selectivity is often enhanced by preorganization of the
Substrate-controlled diastereoselection can often be achieve@ubstrate through Lewis aidr solvent complexation or

when the controlling stereocenter is incorporated into a cyclic jntramolecular hydrogen bondifigAttempts to control

radical. For acyclic diastereoselection, significant levels of
selectivity have also been obtained in radical addition and

reduction reactions using preexisting chiral centerhiral
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diastereoselectivity in free-radical cyclization reactions have diastereoselectivity in various types of azaalkenyl radical
so far been less successful. cyclizations!® The results presented in the following for
Diastereoselectivity is governed primarily by conforma- 3-aza-5-hexenyl radicals show that the N-substituent has a
tional and steric effects as described by the Beckwitlouk dramatic effect on the stereochemical outcome of cyclization.
transition state modélThus, 1- or 3-substituted 5-hexenyl Selenium-based radical precursors suitable for this inves-
radicals afford predominantly cis-disubstituted products, tigation were prepared by two different routes. In contrast
whereas 2- or 4-substituted radicals give mainly trans- to N-tosylaziridines,N-alkylaziridines are not ring-opened
disubstituted ones. However, the selectivity in simple systemsby benzeneselenolate generated by sodium borohydride
rarely exceeds 4:1 in favor of the major diastereomer. Recentreduction of diphenyl diselenide. However, on addition of

successful strategies to perturb Beckwithouk diastereo-

trifluoroacetic acid, ring opening occurred regioselectively

selectivities in intramolecular radical cyclization reactions from the sterically least hindered side. Thus, aziridides

are based on Lewis acid coordinatibvariation in the
hydrogen atom dondf, or the stereochemical influence of
the anomeric effect

The model for radical cyclization proposed by Beckwith

prepared by allylation of the corresponding N-unsubstituted
aziridines, were converted tg-(allylamino)alkyl phenyl
selenide in fair yields as shown in Scheme 2. In another

and Houk is also applicable to various types of heterocycle_

construction (e.g., tetrahydrofur@rand pyrrolidiné® syn-

thesis). Some time ago, we reported the preparation of 2,4-

disubstituted\-tosylpyrrolidines fromN-tosylaziridines via
benzeneselenolate ring openimgallylation, and reductive
radical cyclization (Scheme 1).In disagreement with the

Scheme 1
PhSe,
NTs 4y phse” Rj\ N/( n-BusSnH R/ﬁ
2 A~ 1 ABN, CaHs
NeH s Ts

Scheme 2
NN 1) NaBH,/PhSeSePh NS
[ A—R——.
2) TFA R)\/SEP"
1aR=Bn 2 aR=Bn (86%)

b R=i-Bu b R=i-Bu (47%)a
¢ n-CgHy3 ¢ R=n-CgH13 (45%)2
d PhOCH, d R=PhOCH; (83%)

a One-pot allylation/ring opening

approach, readily prepar€dx-(phenylselenenyl) ketoness
were condensed with allylamine in the presence of titanium
tetrachloride as a dehydrating agéhSubsequent in situ
sodium cyanoborohydride reduction of the imidesfforded

Beckwith—Houk rules, the products were obtained predomi- the desired radical precursdsgScheme 3).

nantely (2/2-3/1) as cis isomers. These results prompted us

to study the N-substituent as a tool for controlling the _
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Scheme 3
/
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a Over two steps

For initial screening of the effect of various N-protecting
groups on diastereoselectivity in 3-aza-5-hexenyl radical
cyclization, aminoselenid2a was reacted with a selection
of acylating, sulfonylating, and phosphinoylating agents
(Table 1). Reductive radical cyclization was then effected
in 60—93% vyields in benzene with thermal (8&C) or
photochemical (15C) initiation in the presence of AIBN
and trin-butylstannane. Diastereoselectivities were deter-
mined by'H NMR, sometimes after acidic hydrolysis of the
N-protecting groups. As shown in Table 1, cyclization of
the N-unprotected compound afforded predominantely the
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Table 1. Diastereoselectivities in the Reductive Radical Table 2. Diastereoselectivities in the Reductive Radical

Cyclization of N-Protected 2-Benzyl-3-aza-5-hexenyl Phenyl Cyclization of 3-Aza-5-hexenyl Phenyl Selenides and Their
Selenides at 80 and 1I'& CorrespondindN-Diphenylphosphinoyl-Protected Derivatives at
o 15°C

n-Bu;SnH n-Bu;SnH Q
—_— =] —_—
AIBN, A (80°C) AIBN, hv (15°C) R R
P or hv (15°C) P P P
cis trans cis

P

R P yield (%)  cis/trans-ratio
. 3 vield (9 , a9 (15°0)
P cisftrans-ratio®  yield (%)°  cis/trans-ratio®  yield (%)°
(80°C) (80°C) (15°C) (15°C) Me H 59° 1/3.8
H 112.6 60 1/3.8 92 o
o Me PhoP 78 18/1
It
EtC 2.2/1 88 2.7/1 82
n-CgHq3 H 86b 1/4
o
o "
FPIC 2.6/1 83 3.211 80 n-CoHys PhoP 85 20/1
o
It . b
t-BuC 2.0 93 2.0/1 87 +Bu H o1 33
o
(o] 1"
It iBu PhoP 84 171
PhC 4.4/1 72 7.1/ 89
tBu H 59° <1/20
4-MeCgHASO2 3.0/1 77 4.0/1 78 °
o "
" tBu PhoP -c
PhP 10/1 79 24/1 81
2 As determined by 'H NMR
b isolated yield Ph H 61° 1/10
o)
1]
Ph PhoP 88 1011
trans isomer, whereas most of the N-protecting groups
directed cyclization to occur in a moderately (2404/1 at PhOCH, H 75 1143
80 °C and 2.6-7.1/1 at 15°C) cis-selective fashion. In o]
. . . . 1"
contrast, cyclization of the diphenylphosphinoyl-protected PhOCH, PhP 72 20/1

aminoselenide was highly (10/1) cis-selective already at 80 .. _
°C and even more so (24/1) at 16. ,soatedyield o
overall cyclization/diphenylphosphinoylation yield
To probe the directing effect of the dipheny|phosphin0y| ¢ the radical precursor could not be prepared by the methodologies

. . . developed
group in other systems, the remaining aminoselencasd
5 were reacted with diphenylphosphinic chloride in meth-
ylene chloride containing triethylamine and DMAP (the At present, we can only speculate as to the reasons for
radical precursor with R= t-Bu could not be prepared in  the high diastereoselectivities in the cyclization reactions.
this way). The unprotecte@-aminoalkyl phenyl selenides The predominant formation dfans-2,4-disubstituted pyr-
and their diphenylphosphinoylated derivatives were then rolidines from unprotected compounds is in accord with the
subjected to radical cyclization at & in benzene with predictions based on the Beckwithlouk transition state
photochemical initiation in the presence of AIBN and tri- model. The high selectivity with the phenoxymethyl side
n-tributyltin hydride. As shown in Table 2, unprotected chain (cis/trans= 1/14.3) could be due to intramolecular
compounds affordetitans-2,4-disubstituted pyrrolidines with  hydrogen bonding as shown in Figure 1, favoring an
fair to high selectivity (cis/trans= 1/3.3-1/20) whereas the  equatorial orientation of the substituent.
N-diphenylphosphinoylated compounds gave the correspond-

ing cis-2,4-disubstituted pyrrolidines with even higher di- || NG

astereoselectivity (cis/trans 10/1—-20/1) in good yields. The

assignment of cis/trans isomers was based on NOESY and

NOE experiments on diphenylphosphinoylated compounds. O\O_//_ 7
The yields reported in Table 2 for unprotected compounds Th=

are those obtained after radical cyclization axdiphen- Figure 1.

ylphosphinoylation.
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The preference for formation o€is-2,4-disubstituted mol higher in energy than the corresponding chair conforma-
pyrrolidines in the radical cyclization of N-protectgeami- tions. Therefore, it is hard to say which of the chair-equatorial
noalkyl phenyl selenides may be explained by?Atrain or boat-axial conformations contribute most to the formation
between the protecting group and the 2-substitdeéntthe of the minortrans-2,4-disubstituted pyrrolidine.
chair-equatorial conformation (Figure 2, exemplified with In the present paper we have demonstrated the usefulness

of the N-substituent for controlling the diastereoselectivity

s in 3-aza-5-hexenyl radical cyclization. By running the

reactions at 15C with photochemical initiatiod and by

. using a hydrogen or a bulky diphenylphosphinoyl protecting
/EQ/P_M_ 7 PhQ-C-F:_N\\_—i group, high levels of diastereoselectivity in the formation
) ,J( N of trans andcis-2,4-disubstituted pyrrolidines, respectively,
chair-equatorial chair-axial can be obtained. It is important to emphasize that the
methodology described in this paper is also well suited for
’g/R7—- asymmetric synthesis. The required enantiomerically pure
PhA—N"T N\ Ph%g_w—‘ aziridines of the type used in Scheme 2 are already available.
o It would also be possible to perform enantioselective
boat-equatorial boat-axial reduction of the imines shown in Scheme 3 to obtain

_ enantiomerically purg-aminoalkyl phenyl selenides.
Figure 2.
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