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ABSTRACT

The microwave spectrum, rotational constants and centrifugal distortion parameters
for CH, 33 CICO?Cl are reported. The nuclear quadrupole coupling constants of the two
non-equivalent Cl atoms were determined from partially resolved quadrupole splittings.
The molecule is planar in the conformation studied here and both Cl atoms occupy the
trans position as shown from their substitution coordinates.

INTRODUCTION

Several IR and Raman studies on chloroacetyl chloride have been pub-
lished. it is generally agreed that two conformations exist in the gaseous
state and that both Cl atoms occupy the trans position in the more stable
form. However, for the other conformation dihedral angles of 150° [1],
120° [2] and 180° [3] are suggested. We have started an investigation of
the microwave spectrum to ob"pain more information about the rotational
barrier. The results reported here refer to the trans conformation.

EXPERIMENTAL

Chloroacetyl chloride was prepared from chloroacetic acid and PCl; and
purified by repeated dlstlllatlon The fraction with boiling point 105—108 °C
was collected.

We recorded the microwave spectrum (0.06 mm Hg, 18—40 GHz) at
room temperature, using 10 kHz Stark modulation. For identification pur-
‘poses double resonance modulation was sometimes used instead. Frequency
measurements were made at a pressure of 0.02 mm Hg; the. accuracy varied
from 0.05 to 0.2 MHz, depending on the separation of quadrupole hyper-
fine components.
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RESULTS

The spectrum was strong and dominated by Q-type transitions J; 55 —
J4.d—a (J= 29—36) and J; 4, > J3 4—3 (J = 16—32). The assignment of these
lines was performed numerically [4] for the vibrational ground state of
CH,, 35 CICO35Cl; the same transitions were observed for torsionally excited
states and for monosubstituted 37Cl species.

The R-type lines were considerably weaker, and their identification was
greatly facilitated by using the double resonance modulation technique. Indeed,
especially for the *’Cl species, where only three R-type lines were found, an
assignment from the Stark spectrum alone would have been rather question-
able.

Many lines showed quadrupole splitting due to the two Cl nuclei. For the
calculation of the rotational constants we used the average frequencies of
the quadrupole components; when the quadrupole splittings were calculated
this was found to be a very good approximation except for low J values (see
below).

The transitions were exclusively b-type; the measured frequencies are
given in Tables 1 and 2, and the molecular parameters derived from them in
Table 3. Since the molecule is planar except for two H atoms, only four
centrifugal distortion parameters were derived. This was done for the
CH,, 35CICO?5Cl ground state only and the resulting values were used for the
other calculations where insufficient data were available to obtain reliable
centrifugal distortion parameters. In this case the standard deviations cal-
culated by the least squares procedure were multiplied by a factor of 5 to
give the values shown in Table 3, since reasonable variations in the fixed
parameters were found to cause this kind of effect.

To analyse the quadrupole splitting we used the formulas given by
Robinson and Cornwell [5] . With approximate quadrupole coupling con-
stants transferred from chloroacetic acid [6] and acetyl chloride [7], the
16-fold splitting of each energy level was calculated and energy differences
were taken according to the selection rules AF = AJ and Ae = 0 (i.e., within
the AF = AJ scheme we allowed a transition between the lowest energy
levels, then one between the next higher levels and so on). We found that usually
most of the 16 transitions thus calculated coincided in groups within the
line widths of our measurements. Four common line profiles are shown in
Fig. 1; for the observed lines (J > 7) the calculated splittings were sym-
metric with respect to the unsplit frequency within 0.05 MHz. These results
were in agreement with the observed spectrum; the distinction between the
various line profiles is somewhat artificial since it depends on the experimental
conditions. : '

To actually derive quadrupole coupling constants for the CH, 35CICO35Cl
species from the measured frequency splittings we used a least squares pro-
cedure. The normal equations were rather ill-conditioned and we found it nec-
essary to use not only the doublet splittings A»(!) but also the subsplittings
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TABLE 1

Observed and calculated transition frequencies and quadrupole splittings for the ground
state of CH, 35 CICO3**C]l (MHz)

Transition Vobsa Ap? Profile® AV(Olb)s A"t(::al)c A"Sb)s Avgl)cc
8 2 6 8 3 5 37555.49° —0.12 3 265 2.65
8 0 8 9 1 9 9288100 —003 1
10 0 10 11 1 11 33020.7° —0.21 1
11 0 11 12 1 12 351549 —005 1
11 1 11 12 0 12 296715 —0.04 1
12 0 12 13 1 13 37325.0 +0.08 1
12 1 12 13 0 13 327406 —0.04 1
13 0 13 13 1 12 20276.94 +0.03 4 2.76 2.77 0.32 0.31
i3 0 13 14 1 14 395387 +0.02 1
13 1 13 i4 0 14 357510 +0.08 1
14 1 14 15 0 15 38703.6® —0.02 1
14 2 13 15 1 14 297138 —0.17 1
15 0 15 i5 1 14 25004.01 +005 2 2.78 2.76 — 0.27
15 1 14 15 2 13 19907.02 +0.03 4 095 0.97 0.26 0.29
15 2 14 16 1 15 33614.8® +0.17 1
16 O 18 16 1 15 27605.15 +0.05 2 276 274 — 0.25
16 1 15 16 2 14 20571.04 —0.00 4 1.03 107 0.22 0.23
16 2 14 16 3 13 32667.4P —0.01 1
17 0 17 i7 1 16 30329.82 —0.01 2 265 269 — 0.23
17 1 16 17 2 15 21462.07 —0.01 2 117 117 — 0.18
17 2 15 17 3 14 318474 +0.16 1
18 0 18 18 1 17 33148.05 +0.04 2 262 263 — 0.21
18 1 17 18 2 1 2259149 —0.03 2 1.33 128 — 0.14
18 2 16 18 3 15 31072.1 +0.25 1
19 0 19 19 1 18 3603429 +0.04 2 249 255 — 0.20
19 1 18 19 2 17 23967.30 —0.01 2 139 1.38 — 0.12
19 2 17 19 3 16 30377.4® +0.10 1
20 1 19 20 2 18 25593.30 +003 2 1.50 1.48 — 0.11
20 2 18 20 3 17 297982 —004 1
21 6 16 20 7 13 39839.27°® —0.05 3 1.61 1.59
21 6 15 20 7 14 39838.51® —0.06 3 1.62 1.59
21 1 20 21 2 19 27468.11 +0.03 2 163 1.57 — 0.11
21 2 19 21 3 18 29367.4 +0.14 1
22 1 21 22 2 20 29584.21 +0.02 2 164 165 — 0.11
22 2 20 22 3 19 291159 +0.01 1
23 1 22 23 2 21 3192769 +0.02 2 168 172 — 0.11
23 2 21 23 3 20 29070.0 +0.03 1
24 1 23 24 2 22 3447861 —005 2 182 1.77 — 0.11
24 2 22 24 3 21 292529 +0.02 1 :
25 1 24 25 2 23 3721133 +0.01 2 1.83 180 — 0.11
25 2 23 25 3 22 2968393 —0.03 2 051 057 — 0.15
26 1 25 26 2 24 40096.49 +0.00 2 193 182 — 0.10
26 2 24 26 3 23 30378.73 ~0.02 2 0.62 068 — 0.11
27 2 25 27 3 24 31349.43 —0.03 2 0.79 0.78 — 0.08
28 2 26 28 3 25 32604.07 —0.03 2 089 089 —. 0.06
29 2 27 29 3 26 3414619 —0.07 2 099 099 — = 0.05.
29 3 26 29 4 25 40179.6® +0.15 1 : -
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TABLE 1 (continued)

(] A ..(l) A sz [&) A ..(2) A ..(2) c

Mynrncifiman > a A s DPrafila

iialisivivs Y abs ey e “¥obs “¥Ycale “Yobs “Ycale
30 2 28 30 3 27 35973.89 —0.04 2 1.07 1.08 — 0.05
30 3 27 30 4 26 39412.1Y —0.29 1

31 2 29 31 3 28 38079.54 —0.11 2 1.14 117 — 0.06
31 3 28 31 4 27 38834.9 +0.03 1

32 3 29 32 4 28 384813 —0.10 1

33 3 30 33 4 29 383786 —0.11 1

34 3 31 34 4 30 385502 —0.01 1

35 3 32 35 4 31 39015.1 +0.12 1

36 3 33 36 4 32 39787.8 +0.15 1

36 5 31 37 4 34 29946.29° —0.02 2 090 1.00 — 0.15
41 6 35 42 5 38 35636.25P +0.19 2 0.48 055 — 0.20
42 6 36 43 5 39 37677.4P —0.15 1

43 10 34 42 11 31 37978.43° +0.03 3 0.55 0.57

a Average values of quadrupole components; Av = v calc P obs*
‘BDMeasured with double resonance modulation.
°See Fig. 1 for identification of line profiles and definition of A»() and Av (.

Ap(2) (Fig. 1). The latter were generally unobservable, but they had to be
introduced as zero (with a smaller statistical weight than the actually measu-
red splittings) in order to make the least squares procedure converge and to
obtain quadrupole coupling constants with acceptable standard deviations.
The resulting agreement between observed and calculated splittings was
satisfactory (Table 1); the derived quadrupole coupling constants appear in
Table 4, together with values for some related molecules. For each molecule
the constants are also given in the coordinate system afc where o coincides
with the C—Cl bond, on the assumption that this is the quadrupole principal
‘axis system.

DISCUSSION

From the I, + I, —I_ values (Table 3) and the smooth curves of inertial
moments versus torsional quantum number v, we deduced that the molecule
has a plane of symmetry.

AV
e < s\
j\/?\ ‘ Y
T ] ' ) .
Type 1 Type 2 Type 3 Type 4

Fig. 1. Line profiles in the microwave spectrum of chlbfoécetyl chloride.
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"The substitution coordinates of the Cl atoms are a=2. 2028 + 0. 0005 R,
b= 0. 1354 + 0.0012 A (CHz Cl group), and a =—2. 1147 + 0.0008 &, b=
0.3487-+ O 0003 A (CcocCl group). The error hm1ts given refer to measure-
ment errors only and the small b-¢oordinates are especially subject. to vibra-
tional effects.. Nevertheless, the CI—Cl distance of 4.323 A is quite reliable
and shows that these two atoms occupy: the trans position.-

‘Table 4 shows that the quadrupole coupling constants for several related
molecules are qulte similar. The charge distribution in the CH, Cl group is
essentlally cylindrically symmetric around the C—Cl bond, whereas consider-
able asymmetry exists in the COCI group. Sinnott [7 1 has discussed the
origin of this effect for acetyl chloride.

“A search for absorption lines due to a second molecular conformation is
planned. - ’
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