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1. INTRODUCTl ON

In this paper an equivalence between solutions of collocation methods

and fixed points of Iterated Defect Correction (IDeC) methods is proved.

Therefore the IDeC-methods can be regarded as efficient schemes for sol-

ving collocation equations. Attention is restricted to the application

of the IDeC to ordinary differential equations (initial value problems

and two point boundary value problems). Extension to other types of op-

erator equations (e.g. partial differential equations, integral equa-

tions, ... ) is straightforward.

In Section 2 special variants of collocation methods, which are of im-

portance in connection with the IDeC are discussed. The basic ideas be-

hind the IDeC are presented in Section 3. The equivalence between collo-

cation schemes and the fixed points of the IDeC-methods is established

in Section 4.

2, COLLOCATION METHODS

2.1. Collocation methods for two point boundary value problems

We consider problems of the form

(2.1 a)

(2.1b)

y' = f(t,y),

g(y(a) ,y(b))

t E [a,b]

o

where y,f and g are vector-valued functions of dimension n with f and

g sufficiently smooth. A number of papers about collocation methods ap-

plied to (2.1) have appeared recently in the literature on the numerical

solution of BVPs for ODEs (e.g. de Boor, Swartz [3], Russel, Shampine

[9], Weiss [11]). From the class of collocation schemes, we consider the

following special type (cf. Weiss [11]):

The collocation solution is a continuous piecewise polynomial which satis-

fies (2.1a) at given (collocation) points.

We now introduce the notation to be used below. The grid is given by
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a = to < • " < t 1 = b

i = 0(1)1-1.

We consider the space of continuous piecewise polynomial functions P(t)

[vector-valued of dimension n] defined by

(2.3)
P(t) .- Pitt), tE: [ti,ti +1

], i 0(1)1-1

Pi(ti+l) = Pi+l(t i +1 ) , i = 0(1)1-2

where all polynomials Pi are of degree m. On (2.2) we construct the sub-

grid

(2.4) i O( 1) 1-1, k 1 (l)m

with collocation nodes

(2.5) o S1 < ..• < sm 1

(important special cases satisfying (2.5) are the Gauss-Legendre, the

Lobatto and the Radau points). The collocation equations become

(2.6) p! (t. k) = f(t. k'P, (t. k)'
1 1, 1, 1 1,

i 0(1)1-1,

k 1 (1 )m.

If sl = 0 or S = 1 in (2.5), then P! (t. 1) or P! (t. ) is interpreted
m 1 1, 1 1,m

as the right derivative or the left derivative, respectively. If t;1 =0

and Sm = 1, then two collocation equations (2.6) hold at every gridpoint

t i = t i,l t i-1,m' Together with the boundary condition

(2.7) o

and the continuity conditions

(2.8) i = 0(1)1-2,

the collocation conditions yield n·l· (m+l) equations for the nolo (m+l)

unknown coefficients of P.

2.2. Collocation methods for initial value problems

The method of Section 2.1 can be interpreted as a method for solving

IVPs, ifin (2.1) the boundary condition is replaced by

(2.9) g(y(a) ,y(b» = y(a) - Ya = O.

In this situation, it is possible to solve the equations (2.6) block by
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block (where one block contains the equations for the interval

[ti ,ti+1]) .

collocation methods can only be justified as efficient computational

strategies for IVPs when the equations are stiff. For such equations

these methods have the advantage of good stability properties combined

with high order accuracy (cf. e.g. Wright [12], Axelsson [1], Ehle [4],

Chipman [2]).

3. ITERATED DEFECT CORRECTION

The Iterated Defect Correction (IDeC) consists essentially in an iter

ative improvement of a given numerical solution (obtained from some

finite difference method). In this section we describe methods derived

from this concept for which an equivalence with collocation methods

will be established below.

3.1. IDeCmethods for two point boundary value problems

In order to obtain an initial approximation to (2.1) by some finite

difference method, we introduce a grid which is a refinement of grid

(2.2) :

(3.1)
t i = si,o < ..• < si,K t i+ 1 }

hi,k := si,k+1si,k' k = 0(1)K1
i 0(1)11

Note: The points t
i

have two different names in the notation of (3.1):

(3.2) t.
1

S.
1,0

i 1 (1) 11

On the grid (3.1), we next consider three wellknown finite difference

methods.

For i = 0(1)11, k = 0(1)K1:

(3.3)

(3.4)

{(TJi ,k+1  TJ i ,k) /hi,k = f (si,k + hi ,k/ 2, (TJi,k + TJi,k+1) /2)

g(TJO,0,TJ I1,K) = 0

{(TJ i,k+1  TJi,k)/hi,k f(Si,k,TJi,k)

g(TJO,0,TJ I 1,K) = 0
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(3.5)
/I)i ,k+1 - I)i ,kJl:i,k = f (si ,k+1 ' Tl i ,k+1)

19(TlO,0,Tl I- 1,K) - o.

Because of (3.2), we require (for all three methods) that

(3.6) Tli,o = l)i-1,K' i = 1(1)1-1

which ensures that the number of equations and the number of unknowns

are indentical.

These methods are usually defined on grids with only one index. However,

the more involved notation of (3.1) will turn out to be essential for

the analysis in the next section.

The solution of a given finite difference scheme «3.3), (3.4) or (3.5))

is denoted by

Interpolation of 1)0 by a piecewise polynomial function po

(3.7) o
P, (s , k)
l l,

o
Pi (t),

o
= Tli,k '

tE: [t i,ti+1]} i

k = O(1)K
0(1)1-1

yields the defect

i = 0(1)1-1.

dOl' (t) := I (t) -
l l(3.8)

tE:[ti,ti+1],

By adding the defect to the righthand side of the original problem
l

(2.1), we obtain a new BVP of a slightly more general type:

From the set of continuous piecewise functions

(3.9)

Y i (ti+1) = Yi+1 (t i+ 1) , i

i = 0(1)1-1;

0(1)I-2}

(where sufficiently high derivatives of the functions Yi exist), we de

termine that function which satisfies the following relations

i = 0(1)1-1

(3.10)

g (yo (a) 'Y1- 1 (b)) 0
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The exact solution of this "piecewise" BVP is po (cf. (3.8)). Despite

our knowledge of the exact solution, we solve the new BVP (3.10) in the

same way as the original BVP (2.1), i.e. the same finite difference

scheme [(3.3), (3.4) or (3.5)] which was used to obtain nO, is now ap

plied to (3.10). This yields

o (0 0n = n , ••• ,n K
0,0 0, ,

We can now use the known global discretization errors n'? k  P'? (s 0 k) of
1, 1 1,

(3.10) as estimates for the unknown global discretization errors
on , ky(s. k) of (2.1). The original idea of estimating the global dis
1, 1,

cretization error in this way is due to Zadunaisky [13].

If we replace the unknown error term in the identity

( 3. 11 ) o ( 0 \y t s , k) = n , k " n , ky(s. k))·
1, 1, 1, 1,

by our estimate, we obtain the following formula for the improvement of

our first solution nO:

(3.12 ) 1 0 (0 0 )n , k:= n . k n , kP,(s. k)1, 1, 1, 1 1,

The whole procedure may be used iteratively,

(3.13) j+1 ._ 0 _ (j _ j )
n : k' no kIn. k Po(s. k) ,1, 1, \ 1, 1 1,

j = 1,2, ...

where p j denotes the polynomial which interpolates n j (analog to (3.7)).

The above iterative strategy is called the Iterated Defect Correction

(IDeC), and the different methods which can be constructed using this

concept are called IDeC-methods. More details about the IDeC and IDeC

methods are available (see, for example Stetter [8] or Frank, Ueberhu

ber [6]).

The IDeCmethods described above use estimates of the global discreti

zation error. We will now discuss other IDeCmethods which use estima

tes of the local discretization errors. As in the "global case", we

start with nO (solution of (3.3), (3.4) or (3.5)), interpolate nO by

pO and construct the new BVP (3.10) the exact solution of which is pO.

Therefore, the exact local discretization error associated with problem

(3.10) can be evaluated: e.g., for the boxscheme (3.3), we obtain
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(3.14 )

o 0
-f (si,k+ hi,k/2,[Pi(si,k) +Pi(si,k+1)]/2)-

- \(PC:)'(S. k+ h. k/2) +
1 1, 1,

o
+f(s. k+h. k/2, P.(S. k+ h. k/2))

1, 1, 1 1, 1,

- (P<;')'{S. k+h. k/2) +f(s. k+h. k/2, P<;'{S. k+ h. k/2))
1 1, 1, 1, 1, 1 1, 1,

o
- d. (S. k + h. k/ 2 )

1 1, 1,

as an estimate for the unknown local discretization error of (2.1)

(3.15 )
li,k := (y(si,k+1) -y(si,k))/hi,k-

- f (s. k + h. k/ 2, [y (s , k) + y (s , k+ 1 ) ] /2) .
1, 1, 1, 1,

To obtain the improved approximation 1, it is necessary to solve

(3.16 )

1 1
=

2 3
This procedure may again be used iteratively, yielding , , ... . The

error estimate used in obtaining n 2 is

(3.17)

1
1. k1,

( 1 1),P. (s. k 1) -P. (s. k) /h. k "
\ 1 1, + 1 1, 1,

1 1
- f (s. k + h. k/ 2, [P. (s. k) + P . (s. k+ 1 ) ] /2) -

1, 1, 1 1, 1 1,

- (p \ , (s. k + h. k/ 2) +\ 1) 1, 1,
1

+ f (s. k + h. k/ 2, P. (s. k + h. k/ 2))
1, 1, 1 1, 1,

(n2,k+1 - n2,k)/hi,k-

1 1
- f (s. k+ h. k/ 2, In. k+n. k+1J/2)-1, 1, 1, 1,

- k+ h . k/2)+
\ 1 1, 1,

1
+ f (s. k + h. k/ 2, P. (s. k + h. k/ 2)) =

1, 1, 1 1, 1,

o 1
- d. (s. k + h. k/ 2) - d. (s. k + h. k/2).

1 1, 1, 1 1, 1,

The general formula for the error estimate is
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(3.18 )

Note This method is a special case of the difference correction of Fox and Pereyra
(cf. e.g. Pereyra [8]). Another "local version" of the IDee which is more simi
lar to Pereyra's approach has been discussed by Frank, Bertling, Ueberhuber [7].

We now establish an equivalence result for both the above variants.

THEOREM 3.1. Consider the following general formulation for a linear BVP

y' = Ay
(3.19 )

By(a) +Cy(b) e.

Then the approximations
1

11 ,
2

11 , given by both the above mEntioned

variants of the IDeC are identical.

PROOF: For the linear equations (3.19), the schemes (3.3), (3.4) and

(3.5) [together with (3.6)] may be written as

(3.20)

For example, in the case of the boxscheme, (3.20) becomes

( 0 _ 0 )/h _ /) ( 0 0 ) 0
\11 i,k+1 11i,k i,k (1 2 A 11 i,k + 11i,k+1

(3.21) o 0
11 i,K  11i+1 ,0

o 0
B11 o,o + C11 I 1,K

o

e.

We use induction. For j

(i) "local variant":

011 1

Le.

1, we obtain

(cf. (3.14), (3.16))

11
1

0
1

 0
1 [cf)

Note For example, in the case of the boxscheme, dO becomes

dO := (so,o + ho,0/2), ... (sI1 ,K1 + h I_ 1 ,K1/ 2)).

Note 2 If (3.19) has a unique solution, then it is well known that

(3.20) has also a unique solution for sufficiently fine grids, i.e.

0 1 is defined.

(ii) "global variant":

oTI0 = ( + (cf. (3.10))
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o
11

1
'1 (cf. (3.12))

which establishes the identi ty for the case j = 1. Let us now assume, for

j = r, that

[
d r - 1) 1

- I. . . 01 J

is valid for both variants of the IDeC. Then for j

(i) "local variant":

r + 1, we obtain

(cf. (3.18)).

(ii) "global variant":

r
11

r+l
T]

which proves the assertion.

3.2. IDeC-methods for initial value problems

If, in Section 3.1, the special boundary condition

•

(3.22) g (y (a), y (b)) = Y(a) - Ya = a

is used, certain IDeC-methods for IVPs are immediately defined. The

schemes (3.3), (3.4) and (3.5) are now the implicit midpoint rule, the

explicit Euler method and the implicit Euler method. Other IDeC-methods

for IVPs are obtained when more general RK-methods are used. This is dis-

cussed in Frank, Ueberhuber [5] where the following asymptotic result
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is proved for equidistant grids (Hi" H = (b-a) II, hi,k:= h = H/K) :

THEOREM 3.2. If a RK-scheme of order K) is used, and if f satisfies

suitable smoothness conditions, then

(3.23) j O(hmi n(p(j+1) ,K) \,Jn : k-Y(s, k) =
1, 1,

for h -+ O.
1 )

Note We interpret "h-+O" in the sense of "1-+ 00 and K fixed".

We have introduced the IDeC as an iterative scheme, but up to now we

have not dicussed how to terminate the process. According to (3.23), a

reasonable termination criterion is given by the maximum achievable

order K, which is reached for nJ if Kip E (J,J+1]. In section 4, other

termination criteria will be discussed.

For BVPs, each IDeC-method consists in computing successively each of

the iterates n1,1]2, ... for the whole interval [a,b]. For IVPs, it is

of course possible to proceed in a blockwise manner, as is indicated

by the following:

0 0
1]0,0' , I]O,K

1 1
no,o' l]o,K

J J
no,o' , 1]0,K

0 0
1]1,0' , 1]1,K

J J
I] 1,0' , n 1 ,K

r
.

The use of such a strategy yields an economy in storage. In Frank,

Ueberhuber [6], a more detailed discussion of this procedure may be

found.

Just as for BVPs, there exist two possibilities (using either estimates

of the global or estimates of the local discretization error) to con-

struct IDeC-methods for IVPs. Theorem 3.1 may immediately be applied

to IVPs, which means that both variants yield identical results for the

linear problem.

1) K is the degree of the interpolating polynomials Pl (cf. (3.7)).
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4. RELATIONS BETWEEN COLLOCATION AND IDEC

When IDeC-methods are applied to certain problems, the convergence of

the iterates n1,n
2,
... to a fixed point n* may be observed. In this

section, we will show that those IDeC-methods based on the schemes (3.3) ,

(3.4) or (3.5) (cf. Section 3) have fixed points that coincide with the

solutions of collocation schemes (discussed in Section 2).

4.1. Boundary value problems

4.1.1. IDee-methods based on the box-scheme

We start our discussion by establishing a relationship between the IDeC

based on the box-scheme (3.3) and an appropriate collocation scheme. For

the IDeC-methods, we assume a grid of the form (3.1) with the same pro-

portional spacing of the subgrid-points s. k in [to ,t.+1], i.e. fora , l l

k = 1 (l)K

(4.1) (so,k - so,k-1) /Ho = .. , = (sI-1,k - sI-1 ,k-1) /H I - 1 ·

The related collocation is defined on the following grid:

(4.2)

with

t. k : = (s. k-1 + s. k) /2,
1, 1.., 1..,

m = K.

i

k

0(1)1-1,

1 (1 )m

Therefore the corresponding collocation nodes satisfy

(4.3) o < S1 < ••• < sm < 1 •

Note A straightforward generalization would consist in dropping the relation (4.1),
resulting in a different collocation scheme on every interval [t

i,ti
+
1].

THEOREM 4.1. Consider an IDeC-method which uses the box-scheme and a

global discretization error estimate. n* is a fixed point of this IDeC-

method iff P*, defined by

(4.4) P'!'{s. k) = n'!' k' i = 0(1)1-1,
l a , .i ,

k = O(l)m

is the solution of the corresponding collocation scheme, i.e.

(4.5) d'!'(t. k) .- (P'!')'(t. k) -f(t. k,P'!'(t. k))
l a , l a , .i. , l a ,

i = 0(1)1-1, k

0,

1 ( 1 )m

PROOF: By definition, n* is a fixed point, iff one step of the IDeC-
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method applied to n* leads again to n*, i.e.

Fixed points are therefore characterized

(4.6)

(4.7)

n'!' l,K i =

k

0(1)11,

0(1 )m.

by

a) Assume p* is the solution of the (corresponding) collocation scheme,

i.e. (4.5) is satisfied. The defining nO are
I

o 0 0 0
(n, k+ 1  n , k) /h, k = f (a , k + h . k/ 2, (n, k + n , k+ 1 ) /2)1, 1, 1, 1, 1, 1, 1,

(4.8) o 0
ni,o = ni 1,m

1T* is defined by

(1T'!' k+1  1T'!' k)/h, k1, 1, 1,

(4.9)
1T'!' = 1T*l,O i1,m

g( 1T * 1T* ) 0
0,0' I1,m .

f t s , k+ h, k/ 2,(1T'!' k+ 1T'!' k+1)/2) +
1, 1, 1, 1,

*+ d. (s - k + h , k/ 2)
1 1, 1,

Since t, k = s , k1 +h, k1/2 [cf. (4.2)] and (4.5) is satisfied, the
1, 1, 1,

equations (4.8) and (4.9) are identical, i.e. (4.7) is satisfied.

b) Let n* be a fixed point, i.e. nO = 1T*. Subtraction of (4.8) from

(4.9) leads to the desired result (4.5). •

THEOREM 4.2. Consider an IDeC-method which uses the box-scheme and a

local discretization error estimate. n* is a fixed point of this IDeC-

method iff

(4.10) d'!'(t, k) =0,
l l,

i = 0(1)11, k = 1 (1) m.

PROOF: Let us consider one IDeestep starting from n*. The estimate of

the local discretization error is

(4.11)

H
kl,

(n'!' k+1n'!' k)/h, kf(s, k+ h, k/ 2,(n'!' k+ n'!' k+1)/2)
1, 1, 1, 1, 1, 1, 1,

M(S'k+ h'k/ 2).
1 1, 1,

The equations for the next iterate are

(4.12 ) (n'!'*k+1n'!'*k)/h, kf(s, k+ h, k/ 2, (n'!'*k +n'!'*k+1)/2)
1, 1, 1, 1, 1, 1, 1,
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a) Suppose (4.10) is satisfied. Then (4.11) and (4.12) imply that

n* =n**, i.e. n* is a fixed point.

b) Suppose 11* = n**, then (4.11) and (4.12) imply (4.10). •
1: According to Theorem 3.1 the "local" and "global" variants of

the IDeC yield identical results, when applied to linear problems. This

is of course not true for nonlinear problems, but Theorem 4.1 and Theo

rem 4.2 show that in the nonlinear case both variants have the same

collocation solution as fixed point.

REMARK 2: From (4.2), it follows that we can construct for any "si,k

grid" of the IDeCmethods a corresponding "t. kgrid" of the colloca
a ,

tion methods. Unfortunately the reverse is not true, e.g. for equidis

tant collocation nodes

E;k=k/(m+1), k=l(1)m,

there exists no corresponding "si,kgrid" for the boxscheme, which

satisfies (4.2). GaussLegendre points with m even do not have a cor

responding "si,kgrid" either, but formodd an "si,kgrid" satisfying

(4.2) may be found (see Fig. 1).

Figure

s.
l,O
o I

t i t i ,1

4.1.2. IDeCmethods based on the scheme (3.4)

The relation (4.2) becomes

s. 2
I

t i , 3

si,3 si,4
o I g

t i , 4 t i +1

m=3

m=4

(4.13) i = 0(1)11, k 1( 1) rn ,

(4.14 )

The corresponding collocation nodes satisfy

o = E; 1 < • •• < E; ru < 1 .

Theorems corresponding to Theorem 4.1 and Theorem 4.2 will now hold for

the IDeCmethods based on the scheme (3.4).

The "gridrestrictions" formulated in Remark 2 for t.he IDeCmethods

based on the boxscheme do not apply in the present situation. There

is a oneto one correspondence between "t. grids" and the "s. kgrids"
l,k a ,

(cf. (4.13)).
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4.1.3. IDeC-methods based on the scheme (3.5)

Remarks analogous to 'those made for the scheme (3.4) apply to the scheme

(3.5) with

and

i O( 1) 1-1, k 1 (l)m

o < S1 < . .• < sm 1 .

4.2. Initial value problems

All the results of Section 4.1 hold for IVPs, if the boundary condition

(4.16 ) g(y(a) ,y(b)) = y(a) -Ya = 0

is used. Collocation schemes for IVPs are only competitive for stiff

systems of ODEs. For such problems methods with good stability proper-

ties are needed. Collocation schemes based on Gauss-Legendre points are

known to be A-stable (cf. Wright [12]), and therefore, the IDeC based

on the implicit midpoint rule (3.3) (with m odd) seems to be an appro-

priate scheme for solving stiff ODEs. Collocation schemes based on

Radau points (with sm = 1) are strongly A-stable (cf. Wright [12]) and

therefore, the IDeC-methods based on the implicit Euler method (3.5)

is perhaps an even more interesting scheme for solving stiff problems.

up to now we have not examined whether the iterates converge to the

fixed point. Consider the IDeC-methods based on the implicit Euler-me-

thod applied to stiff systems. This possibility has been investigated

by Frank, Ueberhuber [6]. It is shown that, for equidistant nodes

(Sk = kim), very promising convergence results hold. Some of these re-

sults do not apply when the nodes are Radau points. As a consequence,

it would appear that an IDeC-method based on the impl. Euler method

on an equidistant grid is the preferred implementation.

If the IDeC is examined as a method for solving collocation equations,

then J (the maximum number of IDeC-steps) is not determined by the

asymptotic result (3.23). In this situation, the standard stopping

cri terion

may be used.
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4.3. Fixed points of IDee-methods for other discretizations

In the previous sub-sections (4.1, 4.2), a relation between collocation

schemes and the fixed point of the IDeC-methods based on methods (3.3),

(3.4) and (3.5) was established. As a consequence, it is natural to

examine whether the IDeC-methods based on arbitrary RK-methods always

have "collocation fixed-points". In general, this question has to be

answered in the negative, as a simple counter-example shows:

If the trapezoidal rule is used as the basic discretization method for

the "global variant" of the IDeC, then the fixed point is characteri-

zed by

d'i'(s, k) +d'!'(s, k 1) = o.
1 .i, , l .i, , +

This fixed point is therefore only equivalent to a rather general

weighted residual method, where instead of requiring the defects to

vanish at any single grid point, a linear combination of the defects

must vanish.

5, CONCLUSION

In this paper, iterative methods for solving collocation equations were

introduced. Any step of the iterative process produces an approximation

which is usually more accurate than Compared with Newton's

method for solving the collocation equations, the above strategy yields

more information by which its implementation can be controlled (for

example, step size control).

In Frank, Ueberhuber [6] the fact is discussed, that the effort neces-

sary to perform the IDeC-steps is low compared with the effort necessary

to solve the basic finite difference scheme ((3.3), (3.4) or (3.5».

Moreover, the structure of the equations (3.3), (3.4) and (3.5) is much

simpler than the structure of the collocation equations. The IDeC-me-

thods are therefore a more economical way for solving the collocation

equations, than Newton's method. E.g. the application of the IDeC to

stiff IVPs requires the solution of systems of non-linear equations of

the same dimension n as the given problem, whereas the dimension of the

collocation equations is nxm, if a scheme with m collocation nodes is

used.

A further advantage of the IDeC-methods for certain IVPs (with high

stiffness) is the fast convergence of the approximations to the fixed

point which corresponds to the solution of a collocation method. In

some situations, an approximation to the fixed point which agrees with
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it to machine accuracy is obtained after one IDeC-step (see Frank,

Ueberhuber [6]).
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