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Energy Levels for Internal and Over-All Rotation of Two-Top Molecules. 
I. Microwave Spectrum of Dimethyl Silane* 
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A method is given for analyzing barrier-dependent "tunnel effect" splittings in rotational spectra of mole­
cules with two equivalent tops. The perturbation treatment is an extension of the "principal axis" method 
for single-top molecules, and is limited to torsional states in which the two principal torsional quantum num­
bers are identical. Tables of perturbation coefficients are given from which the effects of top-top coupling 
on the rotational spectrum may be calculated. The microwave spectra of six isotopic species of dimethyl 
silane have been investigated in the region 8 to 25 kMc. Changes in moments of inertia with isotopic substi­
tution yield the following structural parameters: 

SiC 

SiH 

CH 

1.867 ±O.002 A 

1.483±0.OOS A 

1.095±0.OOS A 

CSiC 

HSiH 

HCH 

110°59' ±10' 

107°50'±20' 

28= 110°59' ±1 0, 
where 28 is the angle between the symmetry axes of the methyl groups. From splittings in the rotational 
spectrum the angle 28 is found to be 110050'±20'. Analysis of splittings for (CH3hSiH2, (CH3hSiD2, and 
(CR.) (CD3)SiH2 indicates that coupling between tops is very small. Assuming no coupling, the barrier to 
internal rotation is 1647±3 caI/mole. From Stark effect measurements the dipole moment is found to be 
0.7S±0.OlD. 

THE results of a large number of microwave studies l 

of single-top asymmetric rotor molecules, such as 
acetaldehyde (CHaCHO), have demonstrated that by 
far the most important mechanism for the production 
of barrier-dependent "tunnel effect" splittings in the 
rotational spectrum is that of coupling between angular 
momenta of internal and over-all rotation. A rather 
elegant and very practical method for the analysis of 
rotational spectra of single-top molecules has been 
developed by Wilson and his co-workers.2 This method, 
sometimes referred to as the "principal axis" method, 
treats top-frame coupling by perturbation theory, and 
because the necessary perturbation sums have been 
extensively tabulated,2b.a it has the great advantage 
that much of the analysis of spectra can be carried out 
by using standard techniques and tables developed 
for rigid asymmetric rotor molecules. 

The present work is the first of a series of papers 
which will deal with the problem of analyzing "tunnel­
effect" splittings in the rotational spectra of two-top 

* This research was made possible by a grant from the National 
Science Foundation. 

1 For literature references and summaries of microwave barrier 
studies, see E. B. Wilson, Jr., Proc. Natl. Acad. Sci. U. S. 43, 
816 (1957), "The Problem of Barriers to Internal Rotation 
in Molecules," Advances in Chemical Physics (Interscience 
Publishers, Inc., New York, 1959), Vol. II; C. C. Lin and J. D. 
Swalen, Revs. Modern Phys. 31, 841 (1959). 

2 (a) R. W. Kilb, C. C. Lin, and E. B. Wilson, Jr., J. Chem. 
Phys. 26, 1695 (1957); (b) D. R. Herschbach, J. Chern. Phys. 
31, 91 (1959). 

3 (a). D. R. Herschbach, Tables for the Internal Rotation Prob­
lem (Department of Chemistry, Harvard University, Cambridge, 
Massachusetts, 1957); J. Chern. Phys. 27, 975 (1957); (b) R. W. 
Kilb, Tables of Degenerate Mathieu Functions (Department of 
Chemistry, Harvard University, Cambridge, Massachusetts, 
1956). Copies of these tables are available on request to Pro­
fessor E. B. Wilson, Jr. 

molecules such as dimethyl silane [( CHahSiH2] and 
ethyl silane (CHaCH2SiHa). These molecules have a 
unique feature not present in single-top molecules; 
the possibility of coupling between tops as well as 
between tops and frame. In our approach to the two­
top problem, we try to make as much use as possible 
of the theory and tables2b •a developed for single-top 
molecules. This objective requires in the zeroth order 
that the tops be independent, so that our treatment is 
limited to cases where top-top coupling is relatively 
"weak." 

In this paper consideration is limited to rotational 
spectra arising from torsional states (of molecules 
with equivalent tops) in which the two principal 
torsional quantum numbers are identical (vv states). 
The results given here will be in part applicable to, but 
not adequate for, torsional states in which the two prin­
cipal torsional quantum numbers are different (vv' 
states). Work on the vv' problem is in progress and will 
be reported in IV of this series. Numbers II and III will 
deal with the analysis of rotational spectra of the two 
kinds of molecules with nonequivalent tops; (a) 
(CH3) (CDa)S-type molecules,4 and (b) CH3CH2SiH3-

type molecules." In so far as vv states of molecules with 
equivalent tops are concerned, Swalen and Costain 
have already shown that in the absence of top-top 
coupling, analysis of rotational spectra requires only 
single-top perturbation coefficients.6 In this work the 
effects of top-top coupling in both the kinetic and 

4 M. Hayashi and L. Pierce, Symposium on Molecular Struc­
ture and Spectroscopy, Ohio State University (1960). 

6 D. H. Petersen and L. Pierce, Symposium on Molecular 
Structure and Spectroscopy, Ohio State University (1960). 

6 J. D. Swalen and C. C. Costain, J. Chem. Phys. 31, 1562 
(1959). See also P. Kasai and R. J. Myers, ibid. 30, 1096 (1959). 
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potential energy are considered.7 The effects of coupling 
in the kinetic energy are shown to be expressable in 
terms of products of tabulated2b single-top perturbation 
sums, and also quite often to be completely negligible. 
Perturbation sums from which the effects of coupling 
in the potential energy can be calculated have been 
evaluated. The theoretical results are applied to the 
analysis of the rotational spectrum of dimethyl silane. 

I. THEORY 

1. Notation 

g=.1', )" ;; refers to principal axes of the entire molecule. 

19= principal moments of inertia of the entire molecule. 

l",=moment of inertia of either internal top about its 
symmetry axis. 

Agk=direction cosines between kth top and the principal 
axes. 

(k= lor 2). 

'q= - ·L;AgIAg2[a/l g. 

g 

F g= components of the total angular momentum along 
the principal axes. 

Pk= total angular momentum of kth top along its 
symmetry axis. 

CPk = LPgAgkl",/lg. 
g 

vk=principal torsional quantum number of the kth 
top. 

(Tk=a symmetry index giving the periodicity of the 
torsional wave function for the kth top. 

a, angle of internal rotation for kth top. 

2. Model and Hamiltonian 

The model adopted for molecules such as 
(CH3hSiH2 or (CH3hS consists of two equivalent 
rigid symmetric tops attached, with symmetry axes not 
coincident, to a rigid asymmetric framework. There are 
then, five degrees of freedom; three for over-all rotation 
and two for internal torsion or rotation. The kinetic 
energy2b,8 for the model may be written as (see Nota­
tion above) 

Hr+ F[ (pI- CPI) 2+ (p2- CP2)2]+ FT (pI- CPI) (P2- CP2) 

+ (h - CP2)(pI- CPI) ], (1) 

7 In the perturbation treatment of footnote 6 (Swalen and 
Costain) a portion of the top-top kinetic energy coupling terms 
are retained and the rest disregarded. One of the results of the 
present investigation shows that in general, it will be a much 
better approximation (for vv states) to disregard all rather than 
just part of these coupling terms. See also, L. Pierce, J. Chern. 
Phys. 31, 547 (1959). 

8 B. L. Crawford, J. Chem. Phys. 8, 273 (1940). 

where Hr is the rigid rotor Hamiltonian 

(2) 

The quantities Pl- CPI and P2-iJ>2 represent, respectively, 
the angular momenta of tops 1 and 2 relative to the 
framework. F and F' are inverse reduced moments of 
inertia for internal rotation and are conveniently de­
fined by the equation 

F ±= F± F' = flN2 (r±q) la. (3) 

The tops are assumed to have threefold symmetry so 
that the Fourier expansion of the potential energy 
gives 

V (aI, (2) Vo+tV3 (2- cos3al- cos3(2) 

+ Va' cos3aI COs3a2+ Va" sin3al sin3az 

11=2,3, •••. (4) 

Implicit in the perturbation treatment described 
below are the assumptions that: (a) terms in Veal, (2) 
having higher than threefold symmetry in at or a2 are 
negligibly small,9 (b) the barrier to internal rotation 
is relatively high so that top-frame coupling may be 
treated as a perturbation, (c) Vs'«V3*' Va"«V3* and, 
F'«F, where V3*= V3- 2V3', so that top-top coupling 
terms as well may be treated by perturbation theory. 
With these assumptions a very appropriate form for 
the Hamiltonian is 

H = HT +2F+(p+ - CP +) 2+ 2F _(p_ - CP _) 2 

+tV3*(2- cos3at- cos3az) 

+ Vs' (1- COS3al) (1- cos3(2) + V3" sin3at sin3a2, (5) 

where 

and 

Except for the occurrence of top-frame coupling 
terms -4F±P±iJ>± the Hamiltonian is separable into 
purely rotational and purely torsional parts. Thus in 
high barrier cases, it would be practical to treat these 
terms by perturbation theory. However, one of the 
principal objectives of this paper is to make fullest 
possible use of existing theoretical methods and 
tables2b ,3 for single-top molecules, and to do this it 
proves necessary to treat both top-top and top-frame 
coupling terms by perturbation theory. Consequently, 
we choose the zeroth-order Hamiltonian as 

H(ObHr+F(PI2+N)+tV3*(2- Cos3al- cos3az), 

(6a) 

9 This assumption seems justifiable in view of the fact that for 
single-top molecules, spectra have thus far been satisfactorily 
interpreted hy using only a V. term in the Fourier expansion of 
the potential energy. See for example, D. R. Herschbach and 
J. D. Swalen, J. Chem. Phys. 29,761 (1958). 
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TABLE I. Symmetry of the torsional basis functions. 

Function" Species 

v=v': VOVO A,A, 

vOvl, vIvO, vOv-l, v-lvO EE 

vlvl, v-lv-l A,E 

vlv-l, v-lvl EA, 

+ 
v;;ev': (1/v'1) (vOv'O±v'OvO) A,A, A,A, 

orb A,A2 A2A, 

(1/v'1) (vlv'l±v'1v1) }' 
(1/v'1) (v-lv' -l±v' -lv-I) A,E A2E 

(1/V1) (vlv' -l±V'lV-l)} 
(1/v'1) (v-lv'l±v' -lvl) EA, EA, 

vlv'O, v'Ovl, v-lv'O, v'Ov-l EL' 

vOv'l, v'lvO, v' -lvO, vOv'-l EE 

a t'0"1V'U2=UVO'"l(al) UV '0'"2(a2). 

b The first alternative if v and v' have the same parity, the second alternati\'e 
if v and v' have opposite parity. 

and the perturbation Hamiltonian as 

H(l) = 2F+<P +2+2F_<P _2-4F+p+<P+ -4F_p_<P_ 

+ F' (pIP2+ P2PI) + Va' (1- COS3al) 

X (1- COS3(2) + Va" sin3al sin3a2. (6b) 

Each of the basis functions for the perturbation treat­
ment then, consists of a rotational factor (asymmetric 
rotor functions) and a torsional factor for each of the 
tops (periodic Mathieu functions). In standard one-top 
notation the two torsional factors are 

where 

Uv~(a) = exp(iCTa) LAkv exp(3ika), CT=O, ±1, (7) 
k 

and the Akv depend only on a reduced barrier parameter 
s, where 

s=4Va*/9F. 

3. Symmetry Considerations 

The application of symmetry principles to rotation­
internal rotation levels of two-top molecules has been 
discussed in detail by Myers and Wilson.lo They have 
shown that for molecules such as (CHahSiH2 or 
(CHahS, the group I of the Hamiltonian (5) is the 
direct product of two simple groups, i.e., CavXCav. The 
reader is referred to their paper for derivation of the 
possible species for energy levels, their statistical 
weights, and selection rules. For our purposes, the only 
required elaboration of their work is the determination 
of the transformation properties of the zeroth-order 

11 R. J. Myers and E. B. Wilson, Jr., J. Chern. Phys. 33, 186 
(1960) . 

torsional functions 

UV~l (al) UV'~2(a2); (8) 

under the operations of the group I. For high barriers 
(high s) the zeroth-order torsional energy levels are 
ninefold degenerate when v= v' and eighteen fold de­
generate when v~v'. Using the following relations; 

Uvo ( -a) = (-1)vUvo (a) 

Uvl (-a) = Uv_l(a) 

Uvo (a+21rn/3) = Uvo(a) 

Uvl (a+21rn/3) = wnUvl (a) 

Uv_l (a+21rn/3) = w2nUv_1 (a) , (9) 

where n= 1, 2 and w= exp(21ri/3), it can be shown 
that when (a) v' = v, the nine functions (8) contain 
the irreducible representations AlAI, AlE, EAI and 
EE once each; (b) v' ~v and vv' = ee or 00, the eighteen 
functions (8) contain the irreducible representations 
AlAI, A2A2, AlE, EA j , A2E, EA2 once each and EE 
twice; (c) v' ~ v and vv' = eo or oe, the eighteen functions 
(8) contain the irreducible representations AIA2, 
A 2A I, AlE, EA I , A 2E, EA2 once each and EE twice. 
The linear combinations of (8) which transform as 
irreducible representations of I are given in Table I. 

It is important to note that while the top-frame 
coupling operators of H(l) belong to the totally sym­
metric species of I, their individual factors do not. 
Thus p+ and <P + belong to the species A IA2, p_ and <p_ 

belong to the species A 2A I, while P±<P± is in AlAI. The 
nonzero matrix elements of P± and <P ± are given in 
Table II. Note that the dipole moment is of species 
AIA2 so that the p+ connections of Table II are also 
the selection rules. 

Finally we note that there is a class of molecules with 
two equivalent tops having less symmetry than 
(CHa)2SiH2. Two examples are dimethyl amine and 
CIS 2,3-epoxybutane. Sagell has shown that for such 

TABLE II. Nonzero matrix elements of p± and <P±." 

p+ or <P+ p- or <P-

A,A,f-+A,A, A,A,f-+A,A, 

A 2A,f-+A2A, A,A 2f-+A ,A, 

p+ p-

A,Ef-+AIE A I Ef-+A2L' 

A 2Ef-+A,E L'AIf-+EA I 

EA,f-+EA2 EA2f-+EA2 

EEf-+EE EEf-+EE 

a For p± the symmetry species refer to species of the zeroth-order torsional. 
functions, while for <P± they refer to species of asymmetric rotor functions. 
Note that there are only four species of asymmetric rotor functions. 

11 M. Sage, thesis, Harvard University (1960). 
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molecules the group I' of the Hamiltonian (5) is also 
the direct product of two simple groups; in this case 
CavX Ca. The effective rotational Hamiltonians given 
in the next section are equally applicable to (CH3hSiH2 

or dimethyl amine type molecules. They are labeled, 
however, according to the symmetry of the torsional 
sublevels under I. Their symmetry under I' is easily 
obtained if we note that the relation between the spe­
cies of C3• and its subgroup C3 is 

4. Perturbation Treatment 

The methods employed here for two-top molecules 
are a natural extension of the so-called principal axis 
method for single-top molecules. Therefore, we shall, 
before proceeding to the problem of two-tops, briefly 
review the perturbation treatment of top-frame coupling 
in single-top molecules. In the "semirigid" approxima­
tion the Hamiltonian is 

H=Hr+F(p-!J>)2+ V(a). (10) 

Treating the terms - 2 Fp!J>, F!J>2, and the asymmetric 
part of Hr as perturbations, the Hamiltonian matrix is 
off-diagonal in the rotational (symmetric top) quan­
tum number K and the principal torsional quantum 
number v. The boundary condition of invariance under 
a-->a+ 211" requires that the zeroth-order torsional 
functions be periodic Mathieu functions, which for 
tops of threefold symmetry have the form (7) and are 
either of period 211"/3 in a (<T=O, A species of C3), 

or 211" in a (<T=±1, E species). For each value of v 
there are then two torsional sublevels, vA (<T=O) and 
vE(<T=±l), and physically, the separation of these 
levels may be regarded as a result of "tunneling" 
through the potential barrier. 

Approximate v diagonalization of (10) is effected by 
applying successive Van Vleck transformations12 to 
reduce the off-diagonal matrix elements of - 2Fp!J> 
to an order high enough so that they may be neglected. 
If, in applying the Van Vleck transformations, the 
spacing of rotational levels is considered negligible 
compared to the spacing of torsional levels, then the 
Hamiltonian matrix approximately factors into smaller 
matrices Hvu, one for each torsional state, where Hvu 
has the form2b 

Hvu=Hr+FL:Wvu(n)!J>n. (11) 
n 

Formally, the neglect of rotational energy differences 
allows !J> to be regarded as a panimeter rather than as 
an operator for the purpose of approximate v diagonali­
zation, so that the Wvu(n) are simply the usual nth­
order perturbation sums encountered in nondegenerate 

12 E. C. Kemble, Fundamental Principles of Quantum Mechanics 
(McGraw-Hill Book Company, Inc., New York, 1937), p. 395. 

perturbation theory,13 Herschbach2b has shown that, 
for sufficiently high s, the Wvu(n) are simply propor­
tional to the vA, vE torsional energy difference; thus 
making apparent the fact that "tunneling" affects 
rotational spectra indirectly via the top-frame coupling 
term. 

The two-top problem differs from the one-top prob­
lem in two fundamental ways. First, regardless of 
whether coupling terms are included or not, there are 
four species of purely torsional functions for v= v', 
and eight species for v~v'. Thus in general the rota­
tional spectrum should consist of quartets for torsional 
states with v= v' and octets for torsional states with 
v~v', as opposed to doublets for any torsional state 
of a single-top molecule. Second, and more important, 
is the fact that with more than one top, terms are 
introduced into the Hamiltonian which have no analogs 
in the one-top Hamiltonian. Regarded as perturbations, 
these top-top coupling terms will affect "tunneling 
rates" and thus, through the top-frame coupling 
terms, will have an effect on the rotational spectrum. 

The present perturbation treatment of two-top 
molecules will be restricted to finding effective rota­
tional Hamiltonians for torsional states having v=v'. 
First let us assume that top-top coupling terms are 
negligible, i.e., set F', V3', and Va" equal to zero. In 
this approximation H(!) reduces to - 4F (P+!J> + + P_!J>_) 
+ 2F (!J> +2+!J> _2). Application of the Van Vleck trans­
formation reduces matrix elements of H(!) which are 
off-diagonal in v to second order so that if rotational 
energy differences are neglected, the effective rota­
tional Hamiltonian to second order has the form14 •15 

(12) 

13 W V(T(2) is not exactly a second-order perturbation coefficient. 
The term F!J>2 contributes only in the first order to H .. and this 
contribution is lumped together with the second-order contribu-' 
tion of -2Fp!J> so that 

W.(2) =42; I pv.·12/(Wv(O)-W •• (O»)+1. 

" For simplicity, one term, which ordinarily will be negligibly 
small for molecules that can be treated by the present theory, 
has been omitted from Eq. (12). This term has the form 
FWvv(X2)(!J>+!J>_+!J>_!J>+) where wvv(x2)=Wv,(2)-WvO(2) if r.v=EE 
and W·v)x2)=0 if rvv=AIAI, A,E, or EA,. By suitably rotating 
the principal axes, this term can be absorbed into Hr. Usually 
this rotation will be negligibly small. For example, in the case of 
dimethyl silane, a rotation of considerably less than one minute 
of arc in the a-b plane is required to remove the !J> +!J> _ cross 
terms for the ground torsional state. 

10 In the absence of top-top coupling, the effective rotational 
Hamiltonian may be written in the alternative form 

Hv.=H r+ F2;n[W ..,(n)!J>,n+ W'''ll(n)!J>2n], 

where 0"10"2 is taken as 00, 10, 11, and 1-1 for rv.= A,A" EE, 
A,E, and EA

" 
respectively. This form of Hvv contains the term 

in (!J>+!J>-+!J>-!J>+) which is omitted in Eq. (13) (see the preced­
ing footnote), i.e., it is correct to the second order (n=2). In 
the third and higher orders it is only approximately correct be­
cause it neglects certain cross terms between !J>I and (J>2. We 
have not investigated the perturbation coefficients for these cross 
terms. 
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TABLE III. Definition of the wvv(±n) in terms of the W,)n)." 

rvv wvv(l) Wvv 
(-I) w

vv
(±2) 

AlAI 0 0 2WvO(2) 

AlE 2Wvl (J) 0 2Wvl (2) 

EAI 0 2Wvl (!) 2W,'1(2) 

EE Wvl(J) Wvl(l) (WvO(2)+WVI (2») 

a The perturbation sums W,..(n) are defined and tabulated in footnotes 2b 
and 3a. 

For every v there are four such Hamiltonians, Hvv; 
one for each of the torsional sublevels VV(AIAl), 
vv(EA 1), VV(AIE), and vv(EE). In each case the 
wvv(±n) are simple linear combinations of the Wv/n) 
defined and tabulated by Herschbach.2b The ap­
propriate linear combinations are listed in Table III 
according to the symmetry of the torsional sublevels. 
While in general the rotational spectra will consist of 
quartets, it should be noted that the odd n terms will 
not contribute, except in the second or higher order in 
the Hr (asymmetric rotor) basis, to the rotational 
energy levels. Thus, if the matrix elements of the odd n 
terms in the Hr basis are small compared to the spacing 
of levels that they connect, the rotational spectrum 
will consist of symmetrical triplets. 

If top-top interaction terms are included in H(l) 

the effective rotational Hamiltonian becomes 

Hvv=Hr+FL:[Wv/+n)<p+n+Wvv(-n)<p_n], n=O, 1,2, 
n 

(13) 

where the Wvv(±n) are comprised of the wvv(±n) plus a 
power series in the parameters 

x=F'/F=-q/r 

y= Va'/Va* 

Z= V3" /V3*. (14) 

To the first order in x, y, and z we define the Wvv(±n) as 

W vv (±n) = Wvv (±n) + xX vv (±n) +y Y vv (±n) +zZvv (±n). (15) 

The Xvv(±n) and Yvv(±n) are defined in Tables IV and V. 
Here Zvv(±n) can be shown to be identically zero for 

n=O, 1, 2. Thus it appears that the coupling term 
Va" sin3al sin3a2 gives rise to no <p ± n dependence in the 
effective rotational Hamiltonian for torsional states 
with v= v'. (It is, however, a very important term for 
states with v=v'±1.) 

The Wvv(±n), unlike the wvv(±n), cannot be regarded 
as simple nth-order perturbation coefficients. The 
Xvv(±n) and Yvv(±n) are actually perturbation sums of 
the (n+ 1) st rather than nth order. In this regard the 
Xv/±n) are somewhat special. Because top-frame 
coupling terms are multiplied by F±=F(l±x), a 
rather large x<p±n dependence is obtained in the nth 
order. However, a portion of the (n+1)st order con­
tributions arising from cross terms between F' (PIP2+ 
P2Pl) and the top-frame coupling terms cancels this 
large x<p±n dependence, so that the Xvv(±n) are com­
posed of only (n+1)st-order perturbation sums. 
Fortunately, the Xv/±n) are very easy to evaluate 
because they can be expressed as linear combinations 
of products of perturbation sums of lower order than 
the (n+1)st. They are, in fact, linear combinations of 
products of the Wv.(n) which have been extensively 
tabulated by Herschbach.2b Inspection of Tables III 
and IV shows that the order of magnitude of the 
Xvv(±n) is , .... {Wv.(2)][wvv(±n)]. Since W v/2)«1 for high 
s and low v, it is apparent that it will often be an 
excellent approximation to set F' = ° for v= v' torsional 
states. However, for v=v'±l the terms in F' like those 
in Va" become very important. 

Unfortunately, we have found no obvious way to 
simplify the Yvv(±n). It is necessary to evaluate them 
directly from the matrix elements of P and p2 tabulated 
by Herschbach3a and Kilb.3b The Yvv(±n) are defined 
in Table V as functions of the expectation value of an 
operator 8= (1- cos3a) and the perturbation sums 
')'v.(n), ov.(2). The sums, ,),(1), have been calculated for 
v=O and 1 at 14 values of s, 16~s~ 100. The sums, 
,),(2), are much more difficult to evaluate and have thus 
far been calculated for v=O, and 1 at only four s values, 
s=20, 28, 40, and 60. For s>20 and v=O, or 1 the 
ov.(2) are negligible. Calculation of ,),'s and o's is still in 
progress and a complete report will be given in II of 
this series. Table VI lists empirical formulas from which 
the YvvHn) may be calculated. These formulas repro­
duce the Yvv(±n) thus far computed to about 2%. 

TABLE IV. Definition of the Xv/±n) in terms of the Wru(n)." 

r VD ~Yl"J' (I) ~tl't (-I) ..tYvv(±2) 

A,AI 0 0 ±2 [W"O(2) j2 

AlE 2j,V'r\(2)Wvl (!) 0 ±2 [W,I(2) l'+3Wvl(!)W"1(3) 
=j=2 [W"I(I) j2W"I(d) 

leA, 0 -2TV"1(2JWr\(!) ±2 [Wv1 (2) 1'-3Wv1 (I)W"1(3) 
=j=2 [W<"l(!) j2Wr\(d) 

FJ~ W vO(2)W
v1

(!) - j,V',·o(2Jj,V'r1(1) ±2W"O(2)Wrl (2)=j= [W"I(I) l2W vo(d) 

a The perturbation sums lVra(n) are defined and tabulated in footnotes 2b and 3a. 
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TABLE V. Definition of Yv.(±1'I. 

Y,.v(1) Yvv(-l) Y (102) 
va 

r •• 
[apart from a factor 

of - (9/2)s J 
[apart from a factor 

of - (9/2)s J 
[apart from a factor 

of 9sJ 

EE 

o 

o 

(e), .• = (vu lei vu) 

(I)={~I P8+ep} 
l'n:r ~ A' 

V' U tr 

o 
o 
2 (8 )r1')'vl (I) 

(e ),O/'vi (I) 

2 (8 ).O')'vO(2) 

2 [ (8 )v1')'vl (2)±OVI (2) 1 
2 [(e ),1')'vl(2)=rOvl(2) 1 
(8 )VO')'vl(2)+ (8 )vl')'vO(2) 

(2)_{ ~' ppe+pep+epp 
'Yt·o' - v' ,v" fl.' /:l.'f ( ) ~' pp () ~/Pe+ep} e v VI (Ll,/)2- P v VI ~ • 

• (2)_1[ CI)J2 (8) (p) ~/P8+ep 
Uur - '2 1't,0" ~ VI! vO"~, ~ 

p8= (v [p [v') (v' lei v), etc. 

It is interesting to note that the Yvv(±l) contribution 
to Wvv(H) is percentagewise virtually identical to the 
Y vv(±2) contribution to the W vv(±2). Thus the problem 
of estimating Va' for a two-top molecule is similar to 
the problem of estimating V 6 for a single-top molecule; 
in general, measurements for more than one torsional 
state are required. The vv=l1 state of a (CHa)2-type 
isotopic species would, together with the vv= 00 state, 
provide an excellent determination of V/ as well as 
Va. However, rotational transitions from the 11 state 
would, in general, be weak and difficult to assign. For 
(CDa) 2-type molecules the study of the 11 state is 
more feasible, but it is likely that in molecules for which 
the present theory is applicable, no splittings would be 
observed for vv=OO. The study of vv'=Ol states is 
probably the best way to get at Va'. However, the 
present treatment does not suffice to interpret rota­
tional spectra arising from 01 states. 

Unsymmetrical isotopic substitution can be used to 
get some information about Va' without the necessity 
of studying excited torsional states. For the ground 
torsional state of a (CHah-molecule species the ratio 
of Yoo(±n) to woo(±n) is roughly -1. 7 to -1.8 in the 
range 30<s<100, while for (CHa) (CDa)-type mole­
cules the corresponding ratio (for the CHa group) is 
about -1.3. This difference is sufficient to obtain a 
crude estimate of V/ from only ground-torsional-state 
rotational spectra. 

II. MICROWAVE SPECTRUM OF DIMETHYL SILANE 

1. Experimental 

Samples of (CHa)2SiH2 and (CRa)2SiD2 were prepared 
by reducing (CHahSiCl2 with LiAllL! and LiAlD4 in 

ethyl ether at O°C. (CRa) (CDa)SiH2 was prepared by 
reacting CDaMgI with CRaSiH2Cl in ethyl ether at 
O°C. The CHaSiH2Cl was prepared in the manner 
described by Kilb and Pierce. l6 

Spectra were observed with a conventional Stark­
modulated (100 kc) spectrometer employing phase­
sensitive detection. Frequency measurements were 
made with a crystal-controlled microwave frequency 
standard which was monitored by the 10 Me WWV 
signal. Weak absorptions due to Sj29.30 and ClS isotopic 
species were measured in natural abundance on a re-

n 

2 
2 
2 
2 

t'u 

00 
01 

TABLE VI. Formulas for (8)",,'Yv.'(1').­
Bn (8 )",,'Yw,(1') /W .. ,(n) = a+bs+c / Sb 

'lJq' a b 

01 -1. 7613 -0.0013124 
01 -1.8003 -0.0010086 

10 11 -6.0296 0.0043701 
11 11 -5.6873 0.0019475 

00 00 -1.8744 -0.0000943 
01 01 -1.8510 -0.0005313 
10 10 -4.7380 -0.0077923 
11 11 -4.3747 -0.0114064 

-1.9232 0.0004219 

2.4382 
3.5604 

48.7719 
37.3250 

4.6211 
4.6724 

15.5627 
6.8513 

6.1163 2 

2 

00 

10 

01 

11 -2.6808 -0.0285468 -34.4660 

a For n=l, these formulas are accurate to 1% in the range 16~s~100. For 
n=2, the formulas are accurate to about 3% in the range 20~s~60. 

b s=4V,./9F. B,=-(9/2)s. B,=9s. 

16 R. W. Kilb and L. Pierce, J. Chern. Phys. 27, 108 (1957). 
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cording potentiometer and may be uncertain by as 
much as ±0.20 Mc. Spectra of the enriched isotopic 
species were displayed and measured on an oscilloscope 
with an estimated uncertainty of less than 0.05 Mc. 
Special effort was made to get accurate splittings, and 
for the enriched isotopic species the splittings are 
estimated to be uncertain by less than 0.02 Mc. Several 
absorption frequencies for (CR3) 2SiR2 and (CR3) -
(CD3) SiR2 were reported in a previous communication.7 

These frequencies have been remeasured and the new 
values given here are somewhat more accurate. 

2. Spectra and Dipole Moment 

Apart from the fact that each rotational transition is 
a triplet (except in the case of (CR3) (CD3) SiR2), the 
ground-state rotational spectrum of dimethyl silane 
is typical of an asymmetric rotor with" b" -type transi­
tions. Below J = 4 the transitions were positively iden­
tified by their character Stark effects. Transition fre­
quencies for (CRa)zSiR2' (CR3)zSiDz, and (CR3)­
(CD3)SiR2 are listed in Table VII. 

The Q-branch series for these species cannot be re­
produced very accurately with the rigid rotor approxi­
mation. Deviations of measured frequencies from the 
rigid rotor values are as large as 5 Mc in the case of the 
606-7616 transition. No centrifugal distortion corrections 

TABLE VII. Ground-state rotational transitions (Me).' 

Transition (CH,) 2SiH2b 

11 857.06 
100->ho 11 858.19 

11 859.33 

12 978.49 
20'1 211 12 979.76 

12 981.03 

14792.71 
30, 3[2 14 794.11 

14 795.50 

17441.16 
404 <it, 17442.72 

17 444.27 

21 068.32 
505 5[4 21 070.13 

21 071.97 

25 771.55 
606 6[5 25 773.65 

25 775.75 

21 649.82 
000 III 21 651.08 

21 652.35 

22 403.80 
212 303 22 402.90 

22 402.03 

a Estimated uncertainty: ±0.05 Mc. 

8 993.41 
8 994.12 
8 994.82 

10 112.93 
10 113.72 
10 114.53 

11 958.60 
11 959.51 
11 960.42 

14 695.69 
14696.75 
14697.84 

18462.82 
18 464.11 
18 465.35 

18438.12 
18 438.86 
18 439.63 

24 013.39 
24 012.92 
24 012.43 

10397.79 
10 398.58 

11 309.18 
11 310.02 

12 776.79 
12 777.78 

14 909.62 
14910.75 

17 823.41 
17 824.74 

21 604.75 
21 606.33 

19082.67 
19083.52 

19 664.24 
19 663.69 

b The triplet components are listed in the order (AlE+EAl),rEE, AlAI 
(according to the symmetry of the torsional sublevel). 

C The doublet components are listed in the order E, A (in single~top~notation). 

T ABLE VIII. Ground-state transitions measured in natural 
abundance (Mc).a 

Transition (CH,) 2Si29H2 (CH,hSi30H2 (Cl'H3) (CH3)SiH2 

17 394.96 17353.41 17 180.01 
404->413 (17396.51)b 17 354.68 17 181.68 

(17 398.06)h 17356.26 17 183.30 

21 086.34 21 106.76 20 646.21 
505 5" 21 088.16 21 108.42 20647.9." 

21 089.93 21 110.22 20 649.83 

24 142.60 
60S 615 25 144.60 

(25 146.60)b 

21 489.88 21 337.99 21 379.40 
000 In 21 491.07 21 339.18 21 380.70 

21 492.33 21 340.20 21 382.00 

• Estimated uncertainty: ±O.20Mc. 
b Obscured by a nearby strong absorption line. Frequency estimated from 

srlitting for a barrier of 1660 cal/mole. 

have been applied. For these three species rotational 
constants have been calculated from the 000-7111, 
lOI-7ho and 202-)211 transition frequencies (a small 
correction for internal rotation was applied to these 
frequencies). Centrifugal distortion effects are small 
for these low J transitions and in the structure analysis 
used here these small effects largely tend to cancel. 

The measured spectra of Si29 ,30 and CIa species are 
given in Table VIII. Since mostly high J transitions 
were measured for these species the rotational constants 
had to be calculated in a different manner. It was as­
sumed that centrifugal distortion effects were for these 
species identical to those for the parent species, (CRa) 2-
SiH2. The transition frequencies thus empirically 
corrected were analyzed in the rigid rotor approxima­
tion. Rotational constants and moments of inertia are 
listed in Table IX. 

The assignments of transitions to Si29 ,ao and C13 species 
were not confirmed by temperature dependence studies. 
However, in the case of the Si29 and Siao isotopic species 
each transition can be used to calculate the b coordinate 
of the silicon atom, and all lines are in excellent 
(±0.001O A) agreement with each other on the value 
of bSi . Furthermore, the observed change in Ia+ h- Ie 
(see Table IX) when Si29 or Si30 replaced Si28 is in the 
theoretically expected direction for an atom lying on 
or very near a principal axisJ7 In the case of the C13 
species the assignment of Table I gives, when Kraitch­
man's equations are used, a b coordinate for the carbon 
atom which is in excellent agreement with the value 
obtained from the first moment equation (see Sec. II. 
3). In all three cases comparison of the Stark effect 
and triplet spacing with that of the parent species clearly 
indicated that J values were correctly assigned. 

The dipole moment of dimethyl silane was deter­
mined from Stark effect measurements on the 0 00-7111 

17 V. W. Laurie and D. R. Herschbach, Symposium on Molecu­
lar Structure and Spectroscopy, Ohio State University (1960). 
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TABLE IX. Rotational constants (Mc) and moments of inertia 
(amu A2) .• 

a b c 

(CHahSiHz 16754.24 5945.44 4896.50 
(CHahSi29H2 16606.85 5945.56 4883.83 
(CHahSi30H, 16467.26 5945.50 4871.52 
(C13Ha) (CHa) SiR, 16605.08 5785.65 4775.22 
(CHahSiD, 13716.25 5749.07 4722.39 
(CHa) (CDa) SiH2 14740.79 5198.82 4342.47 

Ia h Ie Ia+h-Ie 

(CRa).SiHz 30.1733 85.0283 103.2433 11.9583 
(CHa).Si29R z 30.4411 85.0266 103.5111 11. 9566 
( CHa).Si30Hz 30.6992 85.0274 103.7727 11.9538 
(ClaHa) (CHa)SiHz 30.4444 87.3766 105.8654 11. 9555 
(CHahSiDz 36.8563 87.9326 107.0498 17.3762 
(CHa) (CDa)SiHz 34.2947 97.2395 116.4155 15.1187 

a Corrected for internal rotation effects. Conversion factor: 505531 Me 
amu ;\2. 

and 11O-? 101 transitions of the common isotopic species. 
The apparatus was calibrated with OCS. Using the 
dipole moment of OCS as determined by Marshall 
and Weber,18 the dipole moment of dimethyl silane was 
calculated to be 0.7S±0.01D. 

3. Structure of Dimethyl Silane 

The preferred method of calculating structures from 
ground-state rotational parameters involves the use of 
changes in moments of inertia with isotopic substitu­
tion rather than moments of inertia as suchJ9,20 The 
data obtained for dimethyl silane are more than suffi­
cient to employ this technique. The coordinates [in 
the principal axis system of (CH3) 2SiHz of the carbon 
and silicon atoms] were obtained from Kraitchman's 
equations.21 In the case of the carbon atom, changes 
in the a and b moments of inertia were used, while for 
the silicon atom the change in the a moment was used. 

The various alternative combinations of /::"l's give 
only slightly different values for the carbon and silicon 
coordinates simply because the change in Ia+ h- Ie is 
small for C13 or Si29 ,30 substitution and because the 
carbon and silicon coordinates are large (>0.5 A). 

TABLE X. Atom coordinates [(CR3)zSiR2 principal axes J. (A) 

a b c 

Si 0 0.5218 0 

C ±1.S385 -0.5351 0 

R(Si) 0 1.3954 ±1.1983 

Ra(CH,) ±1. 5711 -1.1785 ±0.8857 

R.(CHa) ±2.4400 0.0858 0 

18 S. A. Marshall and J. Weber, Phys. Rev. 105, 1502 (1957). 

However, use of changes in a rather than c moments is 
preferable because of the fact that the former are more 
accurately determined. 

Substitution of deuterium atoms for the silicon hydro­
gens produces a large change in h+ Ic- Ia (0.03 amu 
A). This change is much larger than the experimental 
uncertainties in the moments of inertia. Consequently, 
each of the coordinates adopted for these atoms is the 
average of coordinates calculated from two combina­
tions of /::"/'s. 

In calculating the coordinates of the methyl hydrogen 
atoms, it was assumed that methyl groups were sym­
metric with symmetry axes coincident with the SiC 
bond axes. The CH distance and HCH angles were 
then varied to give the best possible (least-square) 
fit of differences in moments of inertia between (CH3) 2-

CSi 

SiR 

CR 

TABLE XI. Structure of dimethyl silane.· 

1.867±0.002 A CSiC 110° 59'±10' 

1. 483±0. 005 A HSiR 

1.095±0.OO5 A HCR 

2/ib=110° 50'±20' 

107° 50'±20' 

108° O'±20' 

Structural checks [(CHa),SiH,] 

obs calc 

fa (amu AZ) 

h 

30.0941 

84.8421 

102.7705 

30.1733 

85.0283 

103.2433 

~mibi=0.OO9 amu A 

• Conversion factor: 505 531 Me amu AZ. Atomic masses taken from C. n. 
Townes and A. L. Schawlow, Microwave Spectroscopy (McGraw-Hill Book Com­
pany, Inc., New York, 1955). 

b 2/i~angle between the symmetry axes of the two methyl groups. 

SiH2 and (CH3) (CDs) SiH2. The fit obtained was. 
excellent. Deviations were less than 0.01 amu N. 
Tilting the methyl group symmetry axes by as little 
as one degree resulted in a significantly poorer fit of the 
/::"l's. 

Coordinates of atoms in the (CH3hSiH2 principal 
axis system are given in Table X, and bond distances 
and angles in Table XI. 

4. Internal Rotation Analysis 

The operators (P ± in the case of (CH3hSiH2 and 
(CH3)2SiD2 can be written 

(P+=(3Px 

(16) 

where 

19 c. C. Costain, J. Chern. Phys. 29, 864 (1958). and 
'0 L. Pierce, J. Mol. Spectroscopy 3, 575 (1959). 
21 J. Kraitchman, Am. J. Phys. 21,17 (1953). 
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TABLE XII. Internal barrier calculations. Multiplet separation 
(Mc).-

(CHa).SiH, (CH3) ,SiD, 
Transition obs calc 

101~1,o 1.14 1.15 
202 2" 1.27 1.27 
303 3

" 
1.40 1.40 

404 4,3 1.56 1.58 
505 5" 1.83 1.81 
60s 6,5 2.10 2.11 
000 1" 1.27 1.27 
212 303 0.89 0.88 

Va (cal/mole)b 1649±3 

2()o 1100 26' 

fa (amu N) 3.1635 

F (kMc) 174.95 

F' (kMc) -11.18 

a 0.086113 

{J 0.021224 

s 43.95 

- Estimated uncertainty: <0.02 Me. 
b Assuming V.'=O. 

obs calc 

0.71 0.72 
0.80 0.80 
0.91 0.91 
1.08 1.07 
1.27 1.27 

0.76 0.78 
0.48 0.47 

1646±3 

111 ° 10' 

3.1635 

172.25 

-8.69 

0.070809 

0.020334 

44.53 

(CH3) (CD3)SiH, 
Ob5 calc 

0.79 0.77 
0.84 0.86 
0.99 0.98 
1.13 1.12 
1.33 1.33 
1.58 1.58 
0.84 0.85 
0.55 0.54 

1647±3 

1100 52' 

{3.1635 (CH,) 
6.3221 (CD3) 

{173.01 (CH3) 

94.91 (CD3) 

-10.59 

{0.073085 (CH3) 

0.157128 (CD,) 

{0.019850 (CH3) 

0.034002 (CD3) 

{44.37 (CH3) 

80.89 (CD,) 

o 2()=angle between symmetry axes of the methyl groups. 

Because of the smallness of a and {3, for the transitions 
of Table VII, the separation of internal and over-all 
rotation need only be carried out to second order, i.e., 
in Eq. (13) only terms with n~ 2 need be retained.l4•16 

For J>3, Eq. (13) may further be simplified by 
dropping the n= 1 term, in which case the effective 
rotational Hamiltonian has the pseudo-rigid rotor form 

Hvv= Hr+ FWvv (2) [,B2P",2+ a2 P/], (17) 

(The terms which make Wvv(2)~Wvv(-2) are negligibly 
small for dimethyl silane.) For J < 3, the rather small 
effect (0.06 Mc max) of the terms in aPz may be 
exactly evaluated from equations given in references 
2b or 16. In all cases the (3P", term is negligible. 

The Xvv(±n) are for dimethyl silane completely 
negligible in comparison with the wvv(±n). Assuming 
Vs' =0, the splittings are reproduced to within the 

small experimental uncertainty of ±0.02 Mc by taking 
Va= 1649±3 caI/mole for (CHa)2SiH2 and Va= 1646±3 
caI/mole for (CHa)zSiD2. The uncertainty of ±3 
caI/mole represents only the effect of errors in measure­
ment of splittings. Uncertaintites in structural param­
eters, fa in particular, could affect the value of V3 
by as much as 30 caI/mole. 

In the case of (CHa) (CDa)SiH2, if top-top coupling 
terms are ignored, the effective rotational Hamiltonian 
can be taken as the single-top Hamiltonian (11). 
This is so because tunnel effects due to the CD3 group 
in the ground state are negligibly small. Analysis of the 
(CH3) (CD3)SiH2 spliuings yield a barrier V3= 
1647±3 caI/mole, which is in excellent agreement with 
the values obtained for (CHahSiH2 and (CHa)2SiD2. 
The calculations for all three species are summarized 
in Table XII. 

It was pointed out in Section 1.4 that there is a small 
but significant difference in the Yvv(±n) contribution 
to W vv (±n) for (CH3)z- and (CHa) (CD3) -molecular 
species. This fact allows us to make a crude estimate of 
V3' for dimethyl silane. For all three species the Wvv(±n) 

are believed to be experimentally determined with an 
accuracy of 1%. To within this accuracy the Wvv(±n) 

can be fi tted by taking 

V3*= 1647±3 caI/mole 

V3' =0±60 caI/mole 

V3= 1647=r120 caI/mole. 

Table XII lists a value of 2(J for each of the three 
isotopic species. In analyzing the splittings, two 
parameters were used; V3 and the ratio a/{3. The cal­
culated splittings are quite sensitive to a/{3 and thus 
to the angle between the symmetry axes of the tops and 
the principal axes of the molecule. The three values of 
2(J are in excellent agreement with each other and give 
an average 2(J of 1l0050'±20' which is also in good 
agreement with 2(J as determined from changes in 
moments of inertia. Thus apart from a small experi­
mental error, the methyl group symmetry axes can be 
said to be coaxial with their SiC bond axes. 
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