

www.elsevier.nl/locate/carres

CARBOHYDRATE RESEARCH

Carbohydrate Research 328 (2000) 611-615

Note

Synthesis of galactosyl and lactosyl derivatives as potential anti-metastasis compounds

Hui Li, Qing Li, Meng-Shen Cai, Zhong-Jun Li*

Department of Bioorganic Chemistry, School of Pharmaceutical Sciences, Beijing Medical University, Beijing 100083, PR China

Received 16 November 1999; received in revised form 18 April 2000; accepted 21 April 2000

Abstract

Based on the known anti-metastasis activities of lactosides and galactosides, a galactosyl and a lactosyl trimannoside were prepared via the conventional Koenigs–Knorr and trichloroacetimidate methods, respectively. Through typical deblocking procedures, a tetrasaccharide α -D-Galp-(1 \rightarrow 2)- α -D-Manp-(1 \rightarrow 2)- α -D-Manp-(1 \rightarrow 6)- α -D-ManpOCH₃ and a pentasaccharide β -D-Galp-(1 \rightarrow 4)- β -D-Glcp-(1 \rightarrow 2)- α -D-Manp-(1 \rightarrow 2)- α -D-Manp-(1 \rightarrow 6)- α -D-ManpOCH₃ were obtained. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: α-Galactosyl trimannoside; β-Lactosyl trimannoside; Glycosylation; Synthesis

1. Introduction

Raz and Lotan [1,2] discovered that lactose, D-galactose, D-glucosamine, and N-acetyl-Dgalactosamine can inhibit the adhesion of some cancer cells, such as human melanoma A375, SH4, Hs294, Hs852, human adenoma Hela-S3, murine melanoma B16-F1, and murine fibrosarcoma UV-2237P. Among the aforementioned glycoses, lactose has the strongest inhibition activity, whereas other glycoses such as D-mannose, L-fucose, N-acetyl-D-glucosamine have none. The adhesion of cancer cells to other normal cells is the basis of cancer metastasis and proliferation. Oguchi et al. [3] reported that methyl β -lactoside can significantly inhibit murine melanoma B-16

cells from agglomerating in the lungs. Further study of the lactosides indicated that conjugates having a lactosyl group linked to a lysine-lysine peptide or other polylysine peptides through a carbon chain spacer arm have different activities in regard to inhibiting metastasis. Interestingly some of the glycoconjugates have strong anti-metastasis activity while others show no such activity or even enhance metastasis, a factor apparently related to the difference in length of the spacer arms [4]. In addition, such ramified mannans as hexamannoside Man6 and nonamannoside Man9 are also able to induce cancer cell adhesion, whereas trimannoside Man3 has not [5,6].

We therefore postulated that a combination of a galactosyl or lactosyl group and a trimannoside might lead to new anti-metastasis compounds. For this purpose, a tetrasaccharide α -D-Galp-(1 \rightarrow 2)- α -D-Manp-(1 \rightarrow 2)

^{*} Corresponding author. Tel.: + 86-10-62091504; fax: + 86-10-62015584.

E-mail address: zjli@mail.bjmu.edu.cn (Z.-J. Li).

- α -D-Manp-(1 \rightarrow 6)- α -D-ManpOCH₃ (8), and a pentasaccharide β -D-Galp-(1 \rightarrow 4)- β -D-Glcp-(1 \rightarrow 2)- α -D-Manp-(1 \rightarrow 2)- α -D-Manp-(1 \rightarrow 6)- α -D-ManpOCH₃ (13) have been synthesized, using 1+3 and 2+3 coupling modes (see Scheme 1).

2. Results and discussion

The trimannoside **3** was prepared using 2-O-acetyl-3,4,6-tri-O-benzyl- α -D-mannopyranosyl trichloroacetimidate (**1**) as glycosyl donor and the dimannoside **2** [7] as acceptor. The condensation was carried out in a solution of dichloromethane with trimethylsilyl triflate (Me₃SiOTf) as promoter and the yield was good (72.7%). Zemplén deacetylation gave the trisaccharide acceptor **4** in 83.7% yield. 2,3,4,6-Tetra-O-benzyl- α -D-galactopyranosyl bromide (**6**), obtained readily by in situ con-

Scheme 1.

version of the corresponding ethyl 1-thioglycoside **5** [8] reacting with bromine in dichloromethane [9], was coupled to **4** by the conventional Koenigs–Knorr method with Hg(CN)₂ as promoter to give in 54% yield of an exclusive α -galacosylated tetrasaccharide **7**, which was then debenzylated by catalytic hydrogenolysis to afford the deblocked tetrasaccharide **8**. Compound **5** could be coupled directly to glycosyl acceptor **4** using methyl triflate as promoter to afford tetrasaccharide **7**, but the yield was relatively low (20–30%). The configuration of **8** was confirmed by the galactosyl anomeric ³J_{H-1,2}, value of 3.68 Hz.

To prepare pentasaccharide 11, hepta-Oacetyllactosyl trichloroacetimidate 10 [9], obtained by reaction of lactoseheptaacetate 9 and trichloroacetonitrile in the presence of DBU as catalyst, was chosen as glycosyl donor to couple with 4 in the presence of Me₃SiOTf as promoter. The resultant pentasaccharide 11 was obtained in moderate vield (45%). Deacetvlation of 11 in NaOMe-Me₃OH gave compound 12 in 81.7% yield. Subsequent catalytic hydrogenolysis gave the deblocked pentasaccharide 13 in 82.6% yield. ¹H NMR spectroscopy indicated that the nonreducing terminal galactosyl and glucosyl anomeric ${}^{3}J_{H-1,2}$ values are 7.97 and 7.99 Hz, respectively, and thus the β configuration of the lactosylation was thus confirmed.

Compounds 8 and 13, along with several other related oligosaccharides synthesized in our laboratory are being tested for their antimetastasis activity, and the results will be reported later.

3. Experimental

General methods.—Spectra were recorded with the following instruments: ¹H and ¹³C NMR, Bruker ARX-400; the ¹H NMR spectra were recorded with Me₄Si as the internal standard and ¹³C NMR with CDCl₃ as solvent and internal standard; Mass spectra, VG ZAB-Hs; IR, Perkin–Elmer 983. Elemental analyses were performed on a Perkin–Elmer 240C instrument. Optical rotations were measured at 25 °C with a Optical Activity AA-10R polarimeter. The progress of reactions was monitored by thin-layer chromatography (TLC) on Silica Gel GF_{254} (Hai Yang Chemical Factory, Qingdao, Shandong, PR China). Detection was effected by examination under UV light and by charring with 5% phosphomolybdic acid hydrate in EtOH or 20% concd H_2SO_4 in EtOH and heating. PTLC was performed on Silica Gel GF_{254} and column chromatography on silica gel H (Hai Yang Chemical Factory, Qingdao, Shandong, PR China). The solvent systems indicated are volume volume ratios, and the petroleum ether used in the experiment has the boiling range of 60–90 °C.

Methyl 2,3,4-tri-O-benzyl-6-O-[3,4,6-tri-Obenzyl-2-O-(2-O-acetyl-3,4,6-tri-O-benzyl-a-Dmannopyranosyl) - α - D - mannopyranosyl] - α - Dmannopvranoside (3). -2-*O*-Acetyl-3.4.6-tri-O-benzyl- α -D-mannopyranosyl trichloroacetimidate (1) (1.04 g, 1.63 mmol) and methyl 2.3.4-tri-O-benzyl-6-O-(3.4.6-tri-O-benzyl-2- $O - \alpha - D - mannopyranosyl) - \alpha - D - mannopy$ ranoside (2) (1.32 g, 1.44 mmol) were dissolved in dry CH₂Cl₂ (25 ml). To the solution was added powdered 4Å molecular sieve (1.0 g) and the mixture was stirred at room temperature (rt) for 1 h and then cooled to -10 °C for another 20 min. Trimethylsilyl triflate (ten drops) was added and the mixture was stirred for 5 h, during which time the mixture attained to rt. The mixture was filtered through a layer of Celite and rinsed with CH₂Cl₂. The combined filtrate was washed with water, satd aq NaHCO₃, and water, and then dried (MgSO₄). The residue obtained by evaporation of the solvent was subjected to silica gel column chromatography eluting with 6:1 petroleum—acetone to give compound 3 (yield 1.47 g, 72.7%) as a colorless syrup. $R_f 0.50$ (4:1 cyclohexane-acetone); $[\alpha]_{\rm D}$ + 10.5° (c 0.39, CHCl₃). Anal. Calcd. for C₈₄H₉₀O₁₇: C, 73.58; H, 6.57. Found: C, 73.37; H, 6.28. IR: 1732 cm^{-1} (C=O).

Methyl 2,3,4-tri-O-benzyl-6-O-[3,4,6-tri-Obenzyl-2-O-(3,4,6-tri-O-benzyl- α -D-mannopyranosyl)- α -D-mannopyranosyl]- α -D-mannopyranoside (4).—To a solution of compound 3 (1.33 g, 0.95 mmol) in abs MeOH (30 ml), metal sodium (30 mg) was added. The solution was stirred at rt overnight, decationized and evaporated. Column chromatography of the residue on silica gel, eluting with 4:1 cyclohexane-acetone gave compound 4 (yield 1.08) g, 83.7%) as a colorless syrup. R_f 0.37 (4:1 cyclohexane–acetone); $[\alpha]_{\rm D}$ + 19.6° (c, 0.12, CHCl₃); IR: 3460 cm⁻¹ (OH); ¹H NMR: δ 2.60 (br, 1 H, OH), 3.22 (s, 3 H, OCH_3), 3.67-4.70 (m, 49 H, H-1, 2, 3, 4, 5, 6, H-1', 2', 3', 4', 5', 6', H-1", 2", 3", 4", 5", 6", 9× PhC H_2), 7.20–7.32 (m, 45 H, aromatic H); ¹³CNMR: δ 54.61 (OCH₃), 65.27–77.36 (C-2, 3, 4, 5, 6, C-2', 3', 4', 5', 6', C-1", 2", 3", 4", 5", 6", 9 × PhCH₂), 98.82, 99.10, 101.13 (C-1, C-1', C-1"), 127.27-128.41 (aromatic carbon), 138.09, 138.12, 138.25, 138.29, 138.47, 138.55 (2 C), 138.68, 138.72 (aromatic quaternary carbon).

Methyl 2,3,4-tri-O-benzyl-6-O-{3,4,6-tri-Obenzvl-2-O-[3,4,6-tri-O-benzvl-2-O-(2,3,4,6tetra - O - benzvl - α - D - galactopyranosvl) - α - Dmannopyranosyl]- α -D-mannopyranosyl}- α -Dmannopyranoside (7).—To a solution of compound 4 (550 mg, 0.40 mmol) in 25 mL of dry CH_2Cl_2 , $Hg(CN)_2$ (0.33 g) and powdered 4Å molecular sieve (1.0 g) were added and the mixture was stirred for 1 h at rt. Meanwhile, to a solution of compound 5 (780 mg, 1.33 mmol) in 15 mL of dry CH₂Cl₂ was added liquid bromine dropwise (0.25 mL) with stirring for 45 min at rt. The solvent was evaporated in vacuo and toluene $(2 \times 25 \text{ mL})$ was co-distilled from the residue. The resulting galactosyl bromide 6 was dissolved in dry CH_2Cl_2 (10 mL) and the solution added dropwise to the aforementioned mixture. After stirring for 24 h at rt, the mixture was filtered and the filtrate was washed successively with satd brine, satd NaHCO₃ solution, and water, respectively, and dried (MgSO₄). Evaporation of the solvent in vacuo gave a yellowish residue, which was subjected to column chromatography on silica gel eluting with 5:1 petroleum ether-EtOAc to give tetrasaccharide 7 (yield 420 mg, 54.0%) as a colorless syrup; R_f 0.33 (5:1 petroleum ether-EtOAc); $[\alpha]_{\rm D}$ + 37.1° (c 0.35, CHCl₃). ¹H NMR: δ 3.17 (s, 3 H, OCH₃), 3.49–5.20 (54 H, sugar ring H and $13 \times PhCH_2$), 7.17–7.45 (65 H, aromatic H). ¹³C NMR: δ 53.48 (OCH₃), 60.42–80.50 (C-2, 3, 4, 5, 6, C-2', 3', 4', 5', 6", C-2", 3", 4", 5", 6", C-2^{*'''*}, 3^{*'''*}, 4^{*'''*}, 5^{*'''*}, 6^{*'''*}, $13 \times PhCH_2$), 97.96, 98.91, 99.05, 101.12 (C-1, C-1', C-1", C-1"),

127.00–128.53 (aromatic carbon), 138.01, 138.25, 138.36, 138.53, 138.62, 138.70, 138.73, 138.79, 138.85, 138.90, 138.95, 139.17, 139.21 (¹³C, aromatic quaternary carbon).

6-O-[2-O-(2-O-α-D-galactopyran-Methvl $osyl - \alpha - D - mannopyranosyl) - \alpha - D - mannopyran$ osyl]-α-D-mannopyranoside (8).—Compound 7 (320 mg, 0.17 mmol) was dissolved in 4:1 MeOH-EtOAc (65 mL) and the solution was hydrogenlyzed with palladium on charcoal (200 mg) in a hydrogen stream under a pressure of 330 KPa for 24 h. The mixture was filtered and the resulting solution was evaporated to give compound 8 a colorless syrup, which was then dissolved in distilled water and lyophilized to a colorless foam (98 mg, 83.3%), FABMS: (m/z) 681 $[M + 1]^+$; $[\alpha]_D$ $+ 54.0^{\circ}$ (c 0.63, water). ¹H NMR (400 MHz, D₂O): δ 3.43 (s, 3 H, OCH₂), 3.37–4.25 (m, 37 H, sugar ring H, $13 \times OH$), 4.77 (d, 1 H, $J_{1,2}$) 1.48 Hz, mannosyl H-1), 5.17, 5.42 (2 s, 2 H, mannosyl H-1), 5.18 (d, 1 H, J_{1,2} 3.68 Hz, galactosyl H-1); ¹³C NMR: δ 57.33 (OCH₃), 63.46, 63.60, 63.82 (mannosyl C-6), 68.35 (galactosyl C-6), 69.05, 69.47, 69.68, 71.37, 71.82 (2 C), 72.41, 72.74, 72.88, 73.80 (2 C), 73.93, 75.31, 75.66, 81.48, 82.09 (C-2, 3, 4, 5, C-2', 3', 4', 5', C-2", 3", 4", 5", C-2"', 3"', 4"', 5"), 100.51 (galactosyl C-1), 103.20, 103.57, 103.74 (mannosyl C-1). Anal. Calcd. C₂₅H₄₄O₂₁: C, 44.05; H, 6.47. Found: C, 44.36; H, 6.61.

2.3.6-Tri-O-acetyl-4-O-(2.3.4.6-tetra-O $acetyl - \beta - D - galactopyranosyl) - D - glucopyrano$ svl trichloroacetimidate (10).—To a solution of 2,3,6-tri-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-D-glucopyranose [9] (9, 1.13 g, 1.78 mmol) in dry CH₂Cl₂ (20 mL), trichloroacetonitrile (1 mL) was added and the mixture was stirred in an ice-water bath for 10 min. DBU (ten drops) was then added and the mixture was stirred for 2 h during which time the bath reached rt. Evaporation of the solvent in vacuo gave a dark-brown oil, which was purified by column chromatography eluting with 1:1 petroleum ether-EtOAc to give compound **10** (1.1 g, 79.7%), as a yellow syrup. R_f 0.31 (1:1 petroleum ether-EtOAc).

Methyl (2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)- (1 \rightarrow 4)- (2,3,6-tri-O-acetyl- β -Dglucopyranosyl)- (1 \rightarrow 2)- (3,4,6-tri-O-benzyl-

 α - D - mannopyranosyl) - $(1 \rightarrow 2)$ - (3, 4, 6 - tri - O) $benzyl-\alpha$ -D-mannopyranosyl)- $(1 \rightarrow 6)$ -2,3,4-tri-O-benzyl- α -D-mannopyranoside (11).—A mixture of compound 10 (270 mg, 0.35 mmol), compound 4 (290 mg, 0.22 mmol) and powered 4 Å molecular sieve (1 g) in dry CH_2Cl_2 (20 mL) was stirred for 2 h at rt and then cooled to -15 °C. Trimethylsilyl triflate (10 drops) was added and the mixture was stirred for 5 h. The mixture was filtered through a layer of Celite, rinsed with CH₂Cl₂, and then dried (MgSO₄). The residue resulting from evaporation of the solvent was subjected to silica gel column chromatography eluting with 3:1 cyclohexane-acetone to give compound 11 (vield 190 mg, 45%) as a colorless syrup; $[\alpha]_D$ $+11.5^{\circ}$ (c 0.17, CHCl₃); IR: 1748 cm⁻ (C=O). ¹H NMR: δ 1.97, 2.04, 2.06, 2.08, 2.10, 2.15. 2.17 (7 s. 21 H. $7 \times CH_2CO$). 3.23 (s. 3) H, OCH₂), 3.68–5.22 (m, 53 H, sugar ring H, $9 \times PhCH_2$, 7.20–7.30 (45 H, aromatic H). ¹³C NMR: δ 20.49, 20.62 (2 C), 20.71, 20.76, 20.80, 20.85 $(7 \times CH_3CO)$, 54.65 (OCH_3) , 60.95-77.40 (39 C, sugar ring carbon, $9 \times$ PhCH₂), 98.90, 99.0 (2 C) (C-1, C-1', C-1"), 99.35, 101.14 (C-1^{'''}, C-1^{''''}), 127.41–128.88 (aromatic carbon), 138.04, 138.30, 138.33, 138.37(2 C), 138.49(2 C), 138.53, 138.62 (aromatic quaternary carbon), 168.99, 169.46, 169.85, 170.03, 170.15, 170.25, 170.36 (7 C, CH₃CO). Anal. Calcd. for $C_{108}H_{122}O_{17}$: C, 66.60; H, 6.27. Found: C, 67.03; H, 6.20.

Methyl $(\beta$ -D-galactopyranosyl)- $(1 \rightarrow 4)$ - $(\beta$ -D-glucopyranosyl)- $(1 \rightarrow 2)$ -(3,4,6-tri-O-benzyl- α -D-mannopyranosyl)- $(1 \rightarrow 2)$ -(3,4,6-tri-O-benzyl- α -D-mannopyranosyl)- $(1 \rightarrow 6)$ -(2,3,4-tri-Obenzyl- α -D-mannopyranoside) (12).—To a solution of compound 11 (180 mg, 0.09 mmol) in abs MeOH (20 mL) CH₃ONa (10 mg) was added and the mixture was stirred for 2 h at rt. TLC showed that the reaction was complete. The solution was decationized, evaporated, and was purified by PTLC (3:1 CHCl₃-MeOH) to afford compound 12 (yield 125 mg, 81.7%) as a colorless syrup. R_f 0.33 (3:1 CHCl₃-MeOH).

Methyl $(\beta$ -D-galactopyranosyl)- $(1 \rightarrow 4)$ - $(\beta$ -D-glucopyranosyl)- $(1 \rightarrow 2)$ - $(\alpha$ -D-mannopyranosyl)- $(1 \rightarrow 2)$ - $(\alpha$ -D-mannopyranosyl)- $(1 \rightarrow 6)$ - $(\alpha$ -D-mannopyranoside) (13).—To a solution of compound 12 (114 mg, 0.07 mmol) in

MeOH (50 mL) was added Pd-C (10%) and the mixture was hydrogenolyzed in a hydrogen stream under a pressure of 33 KPa for 24 h. The mixture was filtered and the catalyst was rinsed with MeOH and a small amount of distilled water. Evaporation and lyophilization of the filtrate gave compound 13 (yield 48 mg, 82.6%) as a white amorphous solid; FABMS: (m/z) 843 $[M + 1]^+$, 865 $[M + Na]^+$; $[\alpha]_D$ $+35.6^{\circ}$ (c 0.51, water). ¹H NMR (400 MHz, D₂O): δ 3.44 (s, 3 H, OCH₃), 3.35–3.93 (m, sugar ring H), 4.05 (dd, 1 H, mannosyl H-2), 4.27 (dd, 1 H, mannosyl H-2), 4.48 (d, 1 H, $J_{1,2}$ 7.97 Hz, glucosyl H-1), 4.59 (d, 1 H, $J_{1,2}$ 7.99 Hz, galactosyl H-1), 4.76 (d, 1 H, J_{1.2} 1.48 Hz, mannosyl H-1), 5.14 (d, 1 H, J_{1,2} 1.44 Hz, mannosyl H-1), 5.16 (d, 1 H, J_{1.2} 1.28 Hz, mannosyl H-1). ¹³C NMR: δ 57.37 (OCH₃), 62.58, 63.10, 63.48, 63.52, 68.29 (C-6, C-6', C-6", C-6", C-6""), 69.09, 69.46, 71.13 (2 C), 72.08, 72.45, 72.75, 73.21, 73.32, 73.53, 74.98, 75.09, 75.36, 75.73, 76.66, 77.34, 77.95 (2 C), 79. 86, 80.82, 81.38 (C-2, 3, 4, 5, C-2', 3', 4', 5', C-2", 3", 4", 5", C-2", 3", 4", 5", C-2", 3", 4"", 5""), 100.50, 102.87, 103.62, 104.01, 105.54 (C-1, C-1', C-1", C-1"", C-1""). Anal. Calcd.

Acknowledgements

The project was supported by National Natural Sciences Foundation of China and a grant from the Ministry of Science and Technology of PR China.

References

- [1] A. Raz, R. Lotan, Cancer Res., 41 (1981) 3642-3647.
- [2] R. Lotan, A. Raz, Cancer Res., 43 (1983) 2088–2093.
- [3] H. Oguchi, T. Toyokuni, B. Dean, Cancer Commun., 2 (1990) 311–314.
- [4] B. Dean, H. Oguchi, S. Cai, E. Otsuji, K. Tashiro, S. Hakomori, T. Toyokuni, *Carbohydr. Res.*, 245 (1993) 175–192.
- [5] S. Chandrasekaran, M.L. Tanzer, M.S. Gingers, J. Biol. Chem., 269 (1994) 3356–3366.
- [6] S. Chandrasekaran, M.L. Tanzer, M.S. Gingers, J. Biol. Chem., 269 (1994) 3367–3373.
- [7] Z.J. Li, H. Li, M.S. Cai, Carbohydr. Res., 320 (1999) 1-7.
- [8] H. Lönn, Carbohydr. Res., 139 (1985) 105-113.
- [9] F.A.W. Koeman, J.W.G. Meissner, H.R.P. Van Ritter, J.P. Kamerling, J.F.G. Vligenthart, J. Carbohydr. Chem., 13 (1994) 1–25.