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Potassium Complexes Containing Bidentate Pyrrole Ligands: 
Synthesis, Structures, and Catalytic Activity for the 
Cyclotrimerization of Isocyanates
Zhiqiang Guo, a Yuan Xu,b Xiaoqin Wu,a Xuehong Wei *a and Chanjuan Xi*c

The bidentate pyrrolyl ligand, 2-(t-butyliminomethyl)pyrrole and 2-(t-butylaminomethyl)pyrrole, reacted with KH to give 
complexes [C4H3N(2-CH=NtBu)K(THF)]n (1) and [C4H3N(2-CH2NHtBu)K]n (2), respectively. Each has been characterized by 
satisfactory C, H and N microanalysis, NMR spectroscopy, and single crystal X-ray structural analysis. The X-ray structure of 
complex 1 (n ≥1) demonstrated that it exists as a 1D zig-zag coordination polymer in the solid state. Conversely, the structure 
of complex 2 (n ≥1) showed that it is a 2D supramolecular network. They proved to be an effective class of catalysts for 
cyclotrimerization of isocyanate in excellent yield under mild conditions. 

Introduction
Bidentate 2-imino/aminopyrrole ligand precursors (Chart 1), 
making possible the introduction of several kinds of exceptional 
tunable steric and electronic features required for 
compensating coordinative unsaturation of metal centers, have 
attracted considerable attention in the areas of organometallic 
and coordination chemistry in the recent year.1 The synthesis 
and characterization of several classes of metal complexes 
containing 2-imino/aminopyrrolyl ligands, such as Ca(II),2 
Mg(II),3 Al(III),4 Ni(II),5 Cu(II),6 Zr(IV),7 Hf(IV),7a,8 Ti(IV),9 W(V),9a 
Ta(V)10 and rare-earth metals,11 have been particularly studied, 
being mainly used as polymerization catalysts and molecular 
catalysts.

N
HNH R

N
NH R

A B
Chart 1 2-Iminopyrrole (A) and 2-aminopyrrole (B) ligand precursors

However, their alkali metal complexes are generally 
prepared and employed in situ,12 they have rarely been isolated 
from reaction solution and are poorly characterized in the solid 

state, let alone the characterization of their structural features. 
Thus, full realization of the utilization potential of these 
elements still requires substantial advances in understanding 
their basic coordination and organometallic chemistry. 

Driven by the lack of structural information on 2-
imino/aminopyrrolyl potassium complexes, and in light of our 
recent studies on alkali metal complexes incorporating 2-
aminopyrrolyl ligands,13 we decided to isolate and characterize 
the potassium complexes with bidentate pyrrolyl ligand 
[C4H3NH(2-CH=NtBu)] and [C4H3NH(2-CH2NHtBu)], respectively. 
More remarkable, their structural characterizations have 
uncovered a surprisingly diverse range of novel structures from 
1D coordination polymer to 2D supramolecular network, and 
these potassium complexes exhibited highly catalytic activities 
for the cyclotrimerization of aryl isocyanate to the 
corresponding 1,3,5-triaryl isocyanurate under mild conditions.

Results and discussion
Synthesis and characterization of potassium complexes

Treatment of KH with one equiv. of the iminopyrrolyl ligand 
[C4H3NH(2-CH=NtBu)] in THF solution resulted in the one-
dimensional chain potassium complex of the molecular formula 
[C4H3N(2-CH=NtBu)K(THF)]n (1). Similarly, treatment of one 
equiv. of KH with [C4H3NH(2-CH2NHtBu)] in THF resulted in the 
corresponding two-dimensional plane potassium complex 
[C4H3N(2-CH2NHtBu)K]n (2) with good yield (see Scheme 1). Each 
of 1 and 2 were fully characterized by satisfactory C, H and N 
microanalysis, 1H, 13CNMR spectra at ambient temperature, and 
their solid-state structures were established using single-crystal 
X-ray diffraction analysis. The 1H NMR spectra of 1 exhibits two 
doublets for C(CH3)3 and CH=N at δ 1.25 and 8.06, respectively, 
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Scheme 1 Synthetic routes to complex 1 and 2.

representing the manner of molecular structure 1 in a solution 
maintain the solid ones at room temperature.  The protons of 
complex 2 were downfield shifted and exhibited similar spectral 
feature of the corresponding lithium complex in the 1H NMR 
spectrum13b. In addition, the pyrrole ring protons and other 
protons showed resonance signals in each complex at expected 
regions. The NMR spectra also supported the presence of the 
carbon atom in each complex, which are consistent with the 
structure of X-ray analysis.

X-ray single crystal structures of 1 and 2. 

Complex 1 crystallizes in the orthorhombic space group Pnma 
with two formula units in the unit cell. The asymmetric unit 
contains one potassium ion K+, one pyrrolyl ligand L-, and one 
solvent molecular THF (Figure 1). In the crystal structure of 1, it 
presents a one-dimensional coordination polymer, the 
connection of potassium ion by bridging iminopyrrolyl ligand 

                          (a)                                                                        (b)

(c)
Fig. 1 (a) Asymmetric unit of complex 1, with atom-numbering scheme and 
displacement ellipsoids drawn at the 30% probability level; (b) and (c) fragment of 
polymeric coordination chain, running along the y axis from a different 
perspective, in the crystal structure of complex 1. Hydrogen atoms are omitted for 
clarity.

and O atom of THF to give 1D coordination chains running along 
the y axis. As a result, the center metal ion K+ of complex 1 was 
hexa-coordinated by two O atoms from two THF molecular and 
four N atoms from two ligand molecules. Therefore, the 
geometry around the potassium ion in 1 can be best described 
as a distorted octahedral. The K1–N1pyrrolyl and K1–N2imino bond 
distances, 2.806(3) and 2.893(3) Å respectively, are much 
shorter than the corresponding K–N distances observed in 
iminopyrrolyl potassium complex [{2-(Ph3CN=CH)C4H3N}K(THF)
0.5]4 (2.971(3) and 3.005(3) Å respectively).14 The K1–O1 bond 
distances of 2.820(3) Å are within the range of K–O bond 
distances reported in the literature. The bite angle of 61.93(12)° 
for N(1)-K(1)-N(2) was observed for the iminopyrrolyl chelated 
to the potassium atom.

In contrast to complex 1, the potassium complex 2 
crystallizes in a mixed solvent of THF and toluene. It shows in 
the orthorhombic space group Pccn with four molecules in the 
unit cell. The asymmetric unit of potassium complex 2 contains 
two aminopyrrolyl ligand and two potassium ions (Figure 2). It 
is noted that the coordination spheres of the two potassium 
ions are different. The ion K1 is coordinated by two nitrogens 
from an aminopyrrolyl ligand in a bidentate fashion and π 
interaction (η5-mode) from one pyrrole ring of the adjacent 
aminopyrrolyl ligand while the second ion, K2, is coordinated by 
K-π interaction (η2-mode) from pyrrole ring of aminopyrrolyl 
ligand, and chelated by nitrogen atom of the adjacent pyrrole 
ring in a κ1 fashion. In the grown structure, the potassium ion K1 
is observed as a sandwich structure between two pyrrolyl ring 
π-electron densities in a η5-fashion and further chelated by two 
nitrogen atoms of one aminopyrrolyl ligand. The other 
potassium ion K2 are surrounded by three aminopyrrolyl 

                                (a)                                                                    (b)

                              (c)                                                                       (d)

Fig. 2 (a) Asymmetric unit of complex 2, with atom-numbering scheme and displacement 
ellipsoids drawn at the 30% probability level; (b) and (c) Section of the extended 
framework structure showing K-C or K-N atom connectivity; (d) the resulting two-
dimensional layer packing. Hydrogen atoms are omitted for clarity.
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moieties, three pyrrolyl rings bind to potassium ion through its 
central N-atom or ring C-atoms into μ3-(η1-η2-η4)-mode to form 
a 2D supramolecular network structure formed. The K1–
N1pyrrolyl, K1–N3pyrrolyl, K2–N1 pyrrolyl and K2–N3pyrrolyl bond 
distances, 2.747(3), 2.968(3), 2.898(3) and 2.765(4) Å 
respectively, are in good agreement with K–N distances 
observed in complex 1. The K1–N2amino bond distance (2.969(3) 
Å) fits well with the corresponding K–N distances observed in 
iminopyrrolyl potassium complex [{2-(Ph3CN=CH)C4H3N}K(THF) 
0.5]4 3.005(3) Å.14 The distances between the potassium ion K1 
and the pyrrole ring atoms (C10, C11, C12, C13 and N3) were 
found to be 3.124(4), 3.248(5), 3.125(4), 2.932(4) and 2.968(3) 
Å, respectively. These distances are within the range of K-
pyrrolyl centroid distances found in the polymeric potassium 
compound of the sandwiched type reported in the literature.13f 
To the best of our knowledge, this is the first example of a μ3-
(η1-η2-η4)-mode developed by a pyrrole ring towards potassium 
atoms.

The cyclotrimerization of isocyanate catalysed by potassium 
complexes 

Over the past few years, the industrial and commercial 
application of isocyanurates have attracted much attention 
because it could enhance the physical properties of 
polyurethanes, copolymer resins and coating materials15, such 
as increased thermal and chemical resistance, water-resistance, 
transparency, and impact resistance16. And the 
cyclotrimerization of isocyanate has been studied thoroughly 
and many types of catalysts have been developed to obtain the 

Table1. Optimization of cyclotrimerization of isocyanate catalyzed by potassium 
complex a

N C O
N

N N

O

O

OCat.

Solvent, r.t.

2a1a

Entry
Catalyst 
loading
(mol %)

Solvent Time 
(h)

Yield 
(%)b

1 1.0 Et2O 0.5 99

2 1.0 THF 0.5 >99

3 1.0 PhMe 0.5 97

4 1.0 None 0.5 98

5 0.5 THF 0.5 >99

6 0.25 THF 0.5 >99

7 0.1 THF 0.5 96

8 0.1 THF 3 99

9 0.05 THF 3 98

10 0.025 THF 3 95

11c 0.05 THF 3 92

aReaction conditions: isocyanate (30 mmol), room temperature, complex 1 as 
catalyst. bIsolated yield. cComplex 2 as catalyst.

Scheme 2 Substrate scope for cyclotrimerization of isocyanatesa
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2e 95%

Me
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R
R

R

R

2c 95%

2d 90% 2f 93%

2g 94% 2h 91% 2i 95%

aReaction conditions: isocyanate (30 mmol), room temperature, 3 h, complex 1 as 
catalyst with 0.05% mol. bIsolated yield.

isocyanurates in high yields. For example, metal-based catalytic 
systems including inexpensive transition metals such as Zn17, 
Sn18, Cu19, Ni19, Ti20, noble metal Pd21, rare earth metals22 and 
so on. Organic and inorganic molecular catalysts including N-
heterocyclic carbenes,23 phosphines,24 amines,25 fluoride 
anions,26 p-toluenesulfinate27and carbamate anions.28 Our 
group also have reported utilizing various type pyrrolyl lithium 
complexes as catalysts for cyclotrimerization of 
isocyanates.13b,c,g For further exploiting new reaction systems 
based on alkali metal complexes with functionalized pyrrole 
ligands, the above potassium complexes as catalysts for 
cyclotrimerization of aryl isocyanats were studied, and the 
results are listed in Table 1.

The cyclotrimerization of phenyl isocyanate to 1,3,5-
triphenyl-1,3,5-triazinane-2,4,6-trione worked well in various 
solvents at room temperature for 0.5 h in the presence of 1 
mol% of the complex 1 (Table 1, entries 1-4), indicating the 
solvent compatibility of the catalysts though the best result was 
obtained when tetrahydrofuran was employed as solvent. 
Pleasingly, the title complexes could promote this reaction 
almost quantitatively at the 0.1 to 1.0 mol% loadings (Table 1, 
entries 5-8). It is worth noting that the cyclotrimerization 
reaction also can afford 95% isolated yield after 3h when the 
loading of catalyst is decreased to 0.025% (Table 1, entry 10). 
We also evaluated the catalytic behavior of complex 2 for 
cyclotrimerization of isocyanates. it also exhibited good activity 
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for catalytic reaction (Table 1, entry 11), giving the product 
yields over 90%.

Under the optimized reactions, the representative 
isocyanates were also examined using above complex 1 as a 
catalyst at 0.05 mol% loading (Scheme 2). The para-substituted 
isocyanates with electron-donating groups exhibited higher 
reactivity, and the corresponding isocyanurates were obtained 
over 95% yields (2b, 2e). Comparatively, the para-substituted 
isocyanates with electron-withdrawing groups are relatively 
inert, giving the desired products in 91-94% yield because of 
weak nuclephilicity (2f-2g). And the substrate with stronger 
electron-withdrawing group such as 4-nitrophenyl isocyanate 
also gave the corresponding product 2h. In addition, the 
substituent groups at the meta or ortho positions of aromatic 
ring, as well as 1-naphthyl isocyanate, were well tolerated, the 
desired isocyanurates 2c-2d and 2i were isolated in moderate 
to excellent yields (90-95%), indicating that the electronic 
effects were not evident in this process. 

General, this kind of potassium complex shows the higher 
activities in the cyclotrimerization of isocyanates. Their catalytic 
effects are superior to that of the corresponding lithium 
complex [Li{C4H3N(2-CH2NHtBu)}2Li(THF)2] (TON=980)13b and 
lanthanide complexes (TON=392) 22. A proposed mechanism for 
the cyclotrimerization of isocyanates catalyzed by this complex 
would be similar to the reaction catalyzed by Lewis base 
(Scheme 3).13b

LK
R-N=C=O

N N

N OO

O

R

RR

R N
L

OK

2 R-N=C=O

N N

OO

O
RR

L N
R

K

Scheme 3 Proposed mechanism for the cyclotrimerization of isocyanates.

Experimental
General

Unless otherwise noted, all syntheses and manipulations of air-
sensitive materials were performed under a purified nitrogen 
atmosphere using standard Schlenk techniques. 
Tetrahydrofuran and diethyl ether were distilled from sodium 
benzophenone under nitrogen. Hexane and toluene were dried 
using sodium potassium alloy and distilled under nitrogen prior 
to use. KH (30% dispersion in mineral oil) was purchased from 
Aldrich and washed with hexane (2x10 mL) in a Schlenk tube 
before used. All chemicals were sublimed, recrystallized or 
distilled before use. 1H NMR (600 MHz), 13C NMR (150.9 MHz) 
spectra of the compounds were recorded on a BRUKER AVANCE 
III 600MHz instrument at 298 K. Elemental analyses were 
performed on a Vario EL-III instrument. The ligand [C4H3NH(2-

CH=NtBu)] and [C4H3NH(2-CH2NHtBu)] were synthesized 
according to the literature procedure.13a

Preparation of the Potassium complexes

Synthesis of [C4H3N(2-CH=NtBu)K(THF)]n (1). 

A solution of [C4H3NH(2-CH=NtBu)] (0.450 g, 3.0 mmol) in THF 
(15 mL) was added slowly to a suspension of KH (0.12 g, 3.0 
mmol) in THF (15 mL) at -78 °C, the reaction was warmed to 
room temperature and stirred overnight. The resulting solution 
was filtered and concentrated, followed by overnight storage at 
-10 °C afforded colorless, block-like X-ray quality crystals (0.478 
g, 61%). Mp: 51 oC (dec). 1H NMR (d-THF): 8.06 (d, J = 3.9 Hz, 1H, 
CH=NtBu), 6.86 (s, 1H, C4H3N), 6.33 (m, 1H, C4H3N), 6.02 (m, 1H, 
C4H3N), 3.58(s, 4H, THF), 1.73(s, 4H, THF), 1.25 (d, J= 3.8 Hz, 9H, 
NBut); 13C NMR (d-THF): 149.4 (CH=NtBu), 129.6 (C4H3N), 
128.0(C4H3N), 114.5 (C4H3N), 107.7 (C4H3N), 67.1 (THF), 54.9 
(C(CH3)3), 29.6(C(CH3)3), 25.2 (THF); Anal. Calcd for C13H22KN2O: 
C, 59.73; H, 8. 48; N, 10.72. Found: C, 59.51; H, 8.13; N, 10.44.

Synthesis of [C4H3N(2-CH2NHtBu)K]n (2).

A solution of [C4H3NH(2-CH2NHtBu)] (0.457 g, 3.0 mmol) in THF 
(15 mL) was added slowly to a suspension of KH (0.12 g, 3.0 
mmol) in THF (15 mL) at -78 °C, the reaction was warmed to 
room temperature and stirred overnight. The resulting solution 
was filtered and concentrated to a small amount and 
recrystallized to generate colorless, slice-like X-ray quality 
crystals (0.296 g, 52%). Mp: 73 oC (dec). 1H NMR (C6D6+C5D5N): 
8.92 (br, 1H, NH), 6.59(s, 2H, C4H3N), 6.36 (s, 2H, C4H3N), 6.19 
(s, 2H, C4H3N), 3.58 (d, 2H, J = 7.5 Hz, CH2NBut), 0.92 (s, 18H, 
CH2NBut); 13C NMR (C6D6+C5D5N): 131.8 (C4H3N), 116.4 (C4H3N), 
108.1 (C4H3N), 105.2 (C4H3N), 49.7 (C(CH3)3), 40.0 (CH2NBut), 
28.7 (C(CH3)3); Anal. Calcd for C18H30K2N4: C, 56.80; H, 7.94; N, 
14.72. Found: C, 56.27; H, 7.71; N, 14.59.

Typical procedure for the catalytic reaction of isocyanate to 
isocyanurate

A 100 mL Schlenk flask was charged with potassium complexes 
(0.05 mol%) and 20 mL of tetrahydrofuran was added, then 
phenyl isocyanate (30 mmol) was added dropwise through a 
syringe with stirring. The solution became cloudy gradually and 
the white suspension was stirred at room temperature for 3 h 
after the addition was completed. The resulting suspension was 
concentrated under reduced pressure and washed with diethyl 
ether (3 x 10 mL), gave the corresponding isocyanurate as a 
white solid. All of the products were characterized by NMR 
techniques.

Conclusions
In summary, we have presented the synthesis and 
characterization of two potassium complexes incorporating 2-
imino/aminopyrrolyl ligand. According to X-ray analysis, the 
synthesized complexes 1 and 2 are 1D zig-zag coordination 
polymer and 2D supramolecular network in the solid state, 
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respectively. This work also represents rare example of the 
potassium complex supported by pyrrolide species in various 
coordination mode (η1-η5). Two potassium complexes exhibited 
very good catalytic activities for the cyclotrimerization of aryl 
isocyanate to 1,3,5-triaryl-1,3,5-triazinane-2,4,6-trione under 
mild conditions.
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Potassium Complexes Containing Bidentate Pyrrole Ligands: Synthesis, Structures, 

and Catalytic Activity for the Cyclotrimerization of Isocyanates 
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2-(t-Butyliminomethyl)pyrrole and 2-(t-butylaminomethyl)pyrrole react with KH 

to give potassium complexes with intriguing 1D zig-zag coordination polymer and 2D 

supramolecular network structures, respectively. They proved to be an effective class 

of catalysts for cyclotrimerization of isocyanate in excellent yield under mild 

conditions.
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