NEW SKELETAL REARRANGEMENTS VIA A CONSTRAINED CYCLOPROPYLDICARBINYL DIRADICAL GENERATED IN THE PHOTODECARBONYLATION OF 2,4-DIPHENYLTETRACYCLO[3.3.2.0^{2,4}.0^{3,7}]DECA-9-ENE-6,8-DIONE

Kazuko Takahashi,^{*} Emiko Mikami, Kahei Takase, and Tsutomu Takahashi Department of Chemistry, Faculty of Science, Tohoku University, Sendai 980, Japan

Summary: Photodecarbonylation of the title diketone (1) gave 3,3a-diphenyl-3a,7a-dihydroindenone (2), 1,4-diphenylcyclooctatetraene (3), and 1,6-diphenylcycloheptatrien-7-ylketene (4). The reaction pathways are discussed on proposing intermediates of 1,2-diphenyltetracyclo- $[4.3.0.0^{2,9}.0^{5,8}]$ non-3-en-7-one (11) and 1,3-diphenyltricyclo $[5.2.0.0^{2,9}]$ nona-3,5-dien-8-one (13). Ring expansion of 1 to a 6-membered oxacarbene (17) was also observed.

The di- π -methane rearrangement has already been proved to be especially general, therefore one of the challenges in photochemistry is to find a reaction which does not obey the mechanism of di- π -methane rearrangement or to synthesize compounds of interest in structure or in reactivity through the di- π -methane reaction. The highly strained title diketone <u>1</u> seems to be a good model to attain such aims since, by the photodecarbonylation, <u>1</u> could generate a novel cyclopropyldicarbinyl diradical constrained in a cage structure and conjugated with both carbonyl and olefinic groups, whose reaction behavior appears to be quite intriguing. We have recently synthesized <u>1</u> in one pot reaction via the intramolecular cycloaddition of 2-(2, 3diphenylcyclopropen-1-y1)- β -tropolone generated in situ from the reaction of lithium β tropolonate with diphenylcyclopropenium ion.¹ Two phenyl groups on the cyclopropane ring would play an important role as labels in clarifying the pathways of skeletal rearrangements. We have now investigated the photochemical behavior of <u>1</u> and found new skeletal rearrangements initiated by the stepwize decarbonylation on $n-\pi^*$ excitation of 1.

When an oxygen-free ether solution of $\underline{1}$ (1.6 X 10^{-3} M) was irradiated in a quartz vessel with circular array of Rayonet lamps (3500 Å) for 3 hr, products $\underline{2}^2$ and $\underline{3}$ were obtained in 14% and 25% yields, respectively, along with 54% recovery. When $\underline{1}$ was irradiated under similar conditions but in the presence of dimethylamine, ³ 1,6-diphenylcycloheptatrien-7-ylacetamide $\underline{5}$ and 3,5-diphenylbicyclo[3.2.0]hepta-2,6-dien-4-ylacetamide $\underline{6}$ were obtained in 14% and 19% yields, ⁴ respectively, where the formation of $\underline{2}$ was little affected but $\underline{3}$ was not detected. Thus the photolysis of $\underline{1}$ was shown to give three products $\underline{2}$, $\underline{3}$, and ketene $\underline{4}$ which would be

an intermediate leading to 3. The product 2 exhibits an absorption due to a cyclohexadiene chromophore together with a weak $n-\pi^*$ absorption in the UV spectrum. Moreover H_2 proton of 2 exhibits only a small long-range coupling constant (2.5 Hz) with H_{7a} proton which has another vicinal coupling constant with olefinic proton H_7 in the 1 H NMR spectrum. Thus, of the two possible structures 2 and 8, only 3, 3a-diphenyl-3a, 7a-dihydroindenone 2 can account for these data. The product 3 was assigned to 1,4-diphenylcyclooctatetraene by leading to the TCNE adduct 7 whose 1 H NMR revealed that three methine protons in 7 including one bridgehead proton are in a very similar magnetic environment and the bridgehead proton is adjacent to the unsubstituted etheno-bridge. The structures of 5 and 6 were determined based on the spectral data listed in Table 1.

As shown in Scheme I, the photoreaction of $\underline{1}$ is initiated by the C_1-C_8 bond cleavage giving 9 whose intermediacy has been proved by the formation of oxacarbene $\underline{17}$ (vide post). Decarbonylation of 9 leads to the formation of a cyclopropyldicarbinyl diradical $\underline{10}$. 1,2-Diphenyltetracyclo[4.3.0.0^{2,9}.0^{5,8}]non-3-en-7-one $\underline{11}$ which resulted from the radical coupling between C_{10} and C_7 in $\underline{10}$ would be the essential intermediate for ketene $\underline{12}$. The molecular model examination indicates the distance between C_{10} and C_7 in $\underline{10}$ to be close enough to get into cyclization. In the second photochemical step, $\underline{11}$ readily undergoes a cyclobutanone ring opening to give $\underline{12}$ which then rearranges to $\underline{2}$ through thermal 1,3-carbon migration. The rearrangement of $\underline{12}$ giving $\underline{2}$ is quite reasonable on considering the easy transformation of norcaradien-7-ylketene to 3a,7a-dihydroindenone at room temperature.⁵ The regiospecific 1,3-migration of the C_6-C_7 bond in $\underline{12}$ is mainly ascribed to the fixed syn orientation of this bond with the ketene function and the 1,3-migration would take place in preference to the C_7-C_8 bond rotation interfered with the non-bonding interaction between the oxygen atom and the diene part.

The pathway for the formation of $\underline{3}$ can be rationalized by the intermediacy of 1,3diphenyltricyclo[5.2.0.0^{2,9}]nona-3,5-dien-8-one $\underline{13}$ which is derived from the cyclopropane ring opening of $\underline{10}$ to ketene $\underline{4}$ followed by the successive [2+2] π cycloaddition. The cycloaddition

of <u>4</u> to <u>13</u> is quite rational on considering high reactivity of ketenes toward cycloadditions and the recent observation on the formation of tricyclo[5.2.0.0^{2,9}]nona-3,5-diene system from β -(2,4,6-cycloheptatrien-1-yl)-ethylcarbene.⁶ Absence of <u>3</u> on trapping ketene <u>4</u> can be explained by the existence of a thermal equilibrium between <u>13</u> and <u>4</u>. The ketene <u>13</u> prefers to undergo C_1 - C_9 bond breaking to release of its strain leading to <u>4</u>. In contrast to the thermal reaction, the photoreaction of <u>13</u> can be initiated by C_7 - C_8 bond breaking (α -cleavage) giving diradical <u>14</u> or constrained 1,3-diphenyloctavalene <u>15</u> which isomerizes to the final product <u>3</u>. The fact that ketene <u>12</u> was not trapped by dimethylamine is not very surprising in view of its short lived intermediacy at room temperature caused by the rapid and irreversible 1,3-carbon migration to <u>2</u>. It has also been reported that, on attempted trapping with methanol, intermediate endo-norcaradien-7-ylketene is not trapped in this form, but in the form of isomerized cycloheptatrien-7-ylketene to give methyl cycloheptatrienylacetate.⁷ The ketene <u>12</u>, in contrast to <u>4</u>, would be favored to exist in the endo-norcaradien-7-ylketene isomer rather than the corresponding cycloheptatriene since it has both bulky phenyl and ketene groups at the C_7 position.⁸

Although further efforts should have been done to isolate and subject <u>11</u> and <u>13</u> to the photolysis or thermolysis, it is worthy of note that the intermediate formation of the novel compounds <u>11</u> and <u>13</u> was strongly suggested and their photochemical and thermal behavior were primarily revealed in the course of the photoreaction of 1.

On the other hand, when an oxygen-containing ether solution of $\underline{1}$ (1.8 X 10⁻³ M) was irradiated with Rayonet lamps for 2.5 hr, another product <u>16</u> was obtained in 21% yield together with $\underline{2}$ (13% yield), $\underline{3}$ (20% yield), and the recovery (58%). The compound <u>16</u> showed two carbonyl bands due to a six-membered lactone and a five-membered ketone in the IR spectrum, which indeed exhibits intense peaks corresponding to the fragments of M⁺-COO and M⁺-COO-CO in the Mass spectrum. Further structure determination of <u>16</u> was derived from the ¹H NMR data. Apparently the formation of <u>16</u> is accounted for by the intermediacy of oxacarbene <u>17</u> derived from diradical <u>9</u>. A number of cyclobutanones are found to undergo photochemical ring expansion to cyclic oxacarbenes, however for cyclopentanones, such ring expansion is limited to those having a cyclopropane ring at the α -position of the carbonyl group and to those comprized in the 1-methyl-2-norbornanone system.⁹ The formation of <u>16</u> from <u>1</u> is thus a new entry into the ring expansion of cyclopentanones having a cyclopropyl ring at the β position of the carbonyl group.

Table 1. Physical and Spectroscopic Data of Compounds 2, 3, 5, 6, 7, and 16.

<u>2</u>: Pale yellow powder, mp. 134-135 °C, MS m/z (%) 284 (M⁺, 100), 256 (M⁺-CO, 97); IR (KBr) 1710, 1200, 780, 710 cm⁻¹; ¹H NMR (CDCl₃) δ 4.28 (ddd, J=5.2, 2.5, and 2.0 Hz, H_{7a}), 5.80 (dd, J=9.6 and 5.2 Hz, H₇), 5.88 (d, J=9.5 Hz, H₄), 6.01 (ddd, J=9.6, 6.0, and 2.0 Hz, H₆), 6.15 (dd, J=9.5 and 6.0 Hz, H₅), 6.75 (d, J=2.5 Hz, H₂), 7.35 (5H, m, Ph), 7.52 (3H, m, Ph), 7.64 (2H, m, Ph); UV 2 max (c-hexane) 264 nm (log ε 4.15), 217sh (4.20), 284sh (4.02), 355sh (2.55).

- <u>3</u>: Pale yellow **oi**1, MS m/z (%) 256 (M⁺, 100); IR (neat) 3100-3010, 1580, 1490, 1445, 740, 690 cm⁻¹; ¹H NMR (CDC1₃) δ 5.95 (1H, d, J=2.0 Hz), 5.98 (1H, d, J=10.5 Hz), 6.15 (1H, d, J=10.5 Hz), 6.26 (2H, m), 6.35 (1H, br.s), 7.15 (6H, m, Ph), 7.42 (4H, m, Ph); UV λ max (c-hexane) 250 nm (log ε 4.08), 310 (3.30).
- 5: Colorless needles, mp. 113-115 °C, MS m/z (%) 329 (M⁺, 29), 243 (100); IR (KBr) 3030, 2940, 1635, 1500, 1400, 775, 750, 710 cm⁻¹; ¹H NMR (CDC1₃) δ 2.43 (2H, d, J=7.6 Hz H₈), 2.86 (s, NMe), 2.91 (s, NMe), 5.11 (tdd, J_{7,8}=7.6, J_{7,5}=1.5, J_{7,2}=1.3 Hz, H₇), 6.65 (m, J_{2,3}=J_{4,5}=6.6, J_{2,7}=1.3, J_{5,7}=1.5, J_{2,4}=1.0, J_{3,5}=1.5 Hz, H_{2,5}), 6.78 (m, J_{3,4}=9.0, J_{2,3}=J_{4,5}=6.6, J_{3,5}=1.5, J_{4,2}=1.0 Hz, H_{3,4}), 7.32 (6H, m, Ph), 7.59 (4H, m, Ph).
- 6: Colorless needles, mp. 42-43 °C, MS m/z (%) 329 (M⁺, 16), 257 (11), 244 (24), 243 (100); IR (KBr) 3040, 2910, 1650, 1500, 1445, 1400, 765, 703 cm⁻¹; ¹H NMR (CDCl₃) δ 2.45 (dd, J_{gem} =15.0, $J_{8,2}$ =9.7 Hz, H_{8a}), 2.61 (dd, J_{gem} =15.0, $J_{8,2}$ =5.2 Hz, H_{8b}), 2.74 (s, NMe), 2.76 (s, NMe), 3.67 (br.s, $J_{5,4}$ =2.2, $J_{5,2}$ =1.0, $J_{5,6}$ =0.1 Hz, H_5), 3.90 (dddd, $J_{8a,2}$ =9.7, $J_{8b,2}$ =5.2, $J_{2,4}$ =1.3, $J_{2,5}$ =1.0 Hz, H_2), 6.22 (dd, $J_{4,5}$ =2.2, $J_{4,2}$ =1.3 Hz, H_4), 6.61 (d, $J_{6,7}$ =2.7, $J_{6,5}$ =0.1 Hz, H_6), 6.65 (d, $J_{6,7}$ =2.7 Hz, H_7), 7.37 (10H, m, Ph).
- <u>7</u>: Colorless powder, mp. 183-184 °C, MS m/z (%) 384 (M⁺, 1), 284 (73), 256 (100); IR (KBr) 3070, 2960-2890, 2260, 1500, 1455, 780, 760, 712 cm⁻¹; ¹H NMR (CDCl₃) δ 3.98 4.10 (m, H_{2,5,6}), 6.07 (br.s W1/2=2.5 Hz, H₃), 6.47 (dd, J_{6,7}=8.0, J_{7,8}=8.7 Hz, H₇), 6.75 (d, J_{7,8}=8.7 Hz, H₈), 7.35 (5H, m, Ph), 7.60 (3H, m, Ph), 7.80 (2H, m, Ph).
- <u>16</u>: Colorless powder, mp. 117-118 °C, MS m/z (%) 328 (M⁺, 39), 284 (M⁺-coo, 90), 256 (M⁺-coo-CO, 100); IR (KBr) 3060, 2980, 2950, 2860, 1770, 1735, 1270, 1115, 1100 cm⁻¹; ¹H NMR (CDC1₃) δ 3.43 (d, J_{8,4}=6.6 Hz, H₈), 3.86 (dd, J_{6,11}=8.0, J_{4,6}=2.2 Hz, H₆), 4.01 (dd, J=6.6 and 2.2 Hz, H₄), 5.62 (d, J_{1,10}=7.2 Hz, H₁), 6.56 (dd, J_{10,11}=9.2, J=7.2 Hz, H₁₀), 6.80 (dd, J=9.2 and 8.0 Hz, H₁), 7.12 (6H, m, Ph), 7.30 (4H, m, Ph).

Acknowledgement. We thank Prof. T. Miyashi and Assoc. Prof. T. Kumagai for helpful discussions. We also thank Mr. Kazuo Sasaki of Instrumental Analysis Center for measurement of ¹H NMR spectra.

References and Notes

- 1. K. Takahashi, N. Namekata, M. Fukazawa, K. Takase, and E. Mikami, Tetrahedron Lett., in press.
- 2. The dihydroindenone $\underline{2}$ gradually destroyed on the prolonged irradiation; the highest 26% yield was observed when 10% of $\underline{1}$ has been converted.
- 3. Attempts to trap ketenes with methanol were fruitless since $\underline{1}$ underwent easily $C_3 C_4$ bond cleavage by the attack of methanol at room temperature.
- All new compounds gave satisfactory elemental analyses and exhibit the physical and spectroscopic data described in Table 1.
- 5. M. J. Goldstein, B. G. Odell, J. Am. Chem. Soc., 89, 6356 (1967).
- 6. T. Miyashi, T. Sugiyama, T. Nakajo, and T. Mukai, Tetrahedron Lett., 1976, 3903.
- 7. O. L. Chapman, M. Kane, J. D. Lassila, R. L. Loeschen, H. E. Wright, J. Am. Chem. Soc., 91, 6856 (1969).
- 8. K. Takahashi, K. Takase, and H. Toda, Chem. Lett., 1981, 979.
- P. Yates and R. O. Loutfy, Acc. Chem. Res., <u>8</u>, 209 (1975); P. Yates and J. C. L. Tam, J. Chem. Soc., Chem. Commun., 1975, 737.

(Received in Japan 8 August 1988)