ORGANIC CHEMISTRY

2486

COMBINED CARBONYLATION OF NITRO AND AZO COMPOUNDS IN THE SYNTHESIS OF ISOCYANATES

V. I. Manov-Yuvenskii, K. B. Petrovskii, and A. L. Lapidus UDC 542.97:547.546+547.556.3: 546.262.3-31

The formation of isocyanates upon the reaction of CO with nitro and azo compounds [1-3] may proceed by various mechanisms. We studied the combined carbonylation of nitro and azo compounds as well as azo compounds taken separately in order to reveal the differences in their reactivity.

Nitro compounds (NC) in the presence of $PdCl_2$, K_2PdCl_4 , and $(Pd(CO)Cl)_n$ do not react with CO while azo compounds (AC) react in 80-100% conversion to give 30-40% yields of iso-cyanates (PdO/Al_2O_3 and palladium black are not active catalysts for this reaction).

Upon the addition of pyridine to the initial solution containing $PdCl_2$, AC and NC, the conversion of the AC decreases while the conversion of NC increases (Figs. 1 and 2). The ratio of the conversions of NC and AC increases with increasing pyridine concentration, while the ratio of the conversions of the individual NC is not altered. Pyridine inhibits the carbonylation of AC significantly less in the absence of NC.

Picolines, lutidines, quinoline, triphenylamine, triphenylphosphine, triethylamine, and benzimidazole have analogous action (Table 1).

Copper halides and oxides as well as chloride and bromide salts of Fe, Co, Ni, Cr, Mo, V, Ti, and Al, in contrast to their oxides, activate the carbonylation of AC in the presence of PdCl₂ and pyridine, while potassium halides do not affect the process. Molybdates and vanadates suppress the carbonylation of AC. Molybdic acid and acetyl chloride also activate the catalyst. The activating effect of these compounds (Tables 2-4) on the PdCl₂-Py system

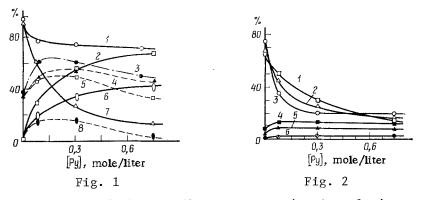


Fig. 1. Effect of the pyridine concentration in solution on the conversion of azobenzene (1, 7), 3-chloronitrobenzene (6), 3,4-dichloronitrobenzene (2), selectivity of the formation of phenylisocyanate (3, 4), 3-chlorophenylisocyanate (5), and 3,4-dichlorophenylisocyanate (8) in the presence of PdCl₂ in the combined carbonylation of nitro and azo compounds (2, 4-8) and carbonylation of only azobenzene (1, 3).

Fig. 2. Effect of the pyridine concentration in solution on the conversion of azobenzene (1-3) and 4-nitrotoluene (4-6) in their combined carbonylation in the presence of PdCl₂ (3, 6), PdCl₂ + FeCl₃ (1, 4), and PdCl₂ + AlCl₃ (2, 5).

N. D. Zelinskii Institute of Organic Chemistry, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 12, pp. 2717-2721, December, 1984. Original article submitted September 15, 1983.

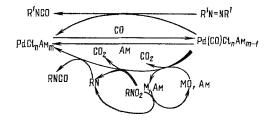

Reaction conditions	Additive	Cor	nversion, a	70	Selectivity (%) for the preparation of iso- cyanates from		
		3 CNB	3,4- DC NB	AB	3- CNB	3.4- DC NB	AB
170°, 80 atm CO	3,5-Dibromopyridine 2,6-Lutidine	00	10 10	98 92	0	0	33 26
	2.5-Lutidine 2-Picoline	12 19 27	$ \begin{array}{r} 30 \\ 34 \\ 40 \end{array} $	48 37 36	30 16 48	6 7 30	64 62 33
	Pyridine 3-Picoline 4 Picoline	30 31	54 52	31 29	52 45	15 19	58 52 49
	4-Ethylpyridine 3.5-Lutidine	32 39 40	59 71 69	26 25 23	59 52 40	14 20 18	43 54 44
200°, 100 atm CC	Triphenylamine Benzimidazole	5 10 31	10 19 58	100 73 7	0 50 40	0 16 0	18 33 80
	Triethylamine Triphenylphosphine Quinoline	51 44 57 58	98 85 90	0 93 64	40 0 4 20	0 1 0	$\begin{vmatrix} 0\\0\\9\\20 \end{vmatrix}$
	Pyridine	100	100	57	31	8	67

TABLE 1. Effect of Additives on the Combined Carbonylation of 3-Chloronitrobenzene (3-CNB), 3,4-Dichloronitrobenzene (3,4-DCNB), and Azobenzene (AB) in the Presence of PdCl₂

may result from their capacity to bind pyridine, thereby decreasing its concentration in solution and its inhibiting effect on the carbonylation of AC.

The carbonylation of NC in solutions of $PdCl_2$ and pyridine is activated by Mo and V oxides, chlorides, and bromides of Fe, Co, Ni, Cr, Mo, P, V, Ti, and Al, molybdic acid, molybdates, vanadates, and acetyl chloride (see Tables 2-4). Potassium halides do not affect the activity of the $PdCl_2$ —Py system, while oxides of Cu, Co, Ni, Cr, and Al deactivate the catalyst (see Tables 2-4).

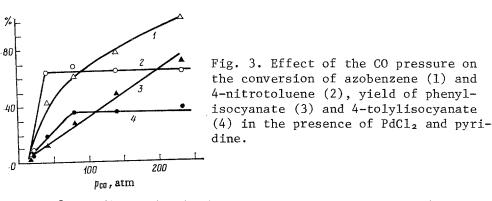
Thus, molybdenum oxide, vanadium oxide, vanadates, and molybdates as well as amines and triphenylphosphine have the common property of facilitating the carbonylation of NC and suppressing the carbonylation of AC, especially in the presence of NC. The ability to bind amines masks this property for molybdic acid, vanadium chloride, molybdenum chloride, and ferric chloride in the presence of the PdCl₂-Py catalyst. Amines and vanadium and molybdenum compounds in the carbonylation of NC apparently activate the palladium catalyst, thereby accelerating the reduction of the nitro group similar to iron compounds [2-3]. The scheme gives the major directions for the conversion of NC, AC, and the catalyst during this process [Am) amines and triphenylphosphine, M) V, Fe, and Mo compounds in their intial reduced form and MO) the same compounds in their subsequent oxidized form] involving the removal of an oxygen atom from the nitro group: PdCl₂ coordinates Am and CO to form $PdCl_nAm_m$ and $Pd(CO)Cl_nAm_{m-1}$ [4] and then $Pd(CO)Cl_nAm_{m-1}$ carbonylates the AC or reduces MO to M with the formation of CO₂. Then, the NC is reduced by reacting with M or with $Pd(CO)Cl_nAM_{m-1}$. The nitrene formed in the reduction of the nitro compound coordinated on M is converted to an isocyanate as a result of reaction with $Pd(CO)Cl_{n}Am_{m-1}$; Am participates in the transfer of oxygen from the nitro compound to CO_2 . In the absence of Am promotors, M, and MO, the carbonylation of nitro compounds is insignificant. This finding indicates that the reaction of nitro compounds with the promotor is the major process in the reduction of these compounds.

The above scheme explains the inhibiting effect of amines and Fe, V, and Mo compounds on the carbonylation of AC in the presence of NC and its diminution in the absence of NC (see Tables 1 and 2 and Fig. 1 as well as our previous work [3]). This inhibiting effect is observed when it is not masked by the promotion effect due to coordination of Am. These schemes permit us to understand the different effect of the CO pressure on the carbonylation of NC

TABLE 2. Effect of Additives on the Combined Carbonylation of 2-Chloronitrobenzene (2-CNB) and 2,2'-Azotoluene (AT) in the Presence of $PdCl_2 + Py$

Addi - tive	Conversion,		Selectivity (%) for the preparation of isocyanates from		Additive	Conversion,		Selectivity (%) for the preparation of isocyanates from	
	2- CNB	AT	2-CNB	AT	nualtive	2- CNB	AT	2- CNB	AT
V2O5 Al (VO3) 3 NaVO3 VCl3	70 97 99 100 100	45 21 25 31 84	68 64 60 56 45	$52 \\ 52 \\ 50 \\ 48 \\ 72$	M_0O_3 CdM_0O_4 $H_2M_0O_4$ M_0Cl_5 CH_3COCl	100 100 100 100 98	29 31 65 97 70	49 48 55 74 36	45 42 63 53 50

TABLE 3. Effect of Additives on the Combined Carbonylation of 4-Nitrotoluene (4-NT) and Azobenzene (AB) in the Presence of $PdCl_2 + Py$


т., ℃	Additive	Conversion, %		Selectivity of isocyanate preparation from		T., °C	Additive	Conversion,		Selectivity (%) of iso- cyanate prep- aration from	
		4-NT	AB	4 - NT	AB			4-NT	AB	4-NT	AB
190	TiO ₂ Fe ₂ O ₃ FeCl ₃ Cr ₂ O ₃	25 25 24 32 18	66 66 65 80 50	36 35 37 50 25	60 58 62 65 30	200	CoO Co3O4 Al2O3 *	40 10 9 0	73 17 15 0	42 0 0 0	52 0 0 0

*40 mmoles Al₂O₃ per mole PdCl₂.

TABLE 3. Effect of Additives on the Combined Carbonylation of 3-Chloronitrobenzene (3-CNB), 3,4-Dichloronitrobenzene (3,4-DCNB), and Azobenzene (AB) in the Presence of $PdCl_2$ + Pyridine

	(Conversion, %	· · · · · · · · · · · · · · · · · · ·	Selectivity of isocyanate preparation				
Addi- tive	3-CNB	3,4-DC NB	AB	3 CNB	3,4-DC NB	AB		
KI	25	40	27	38	10	40		
	29	47	33	40	15	50		
KBr	32	54	34	54	18	42		
CoCl ₂	43	60	45	25	10	26		
CrCl ₃	48	61	49	18	4	68		
AlCl ₃	45	65	50	34		55		
MoCl ₅	86	100	88	61	_	64		
VCl₃	74	100	22	84	0	40		
PBr_3	100	100	100	33	0 6 2 3 6	42		
NiO	35	(38 (17	3	2	12		
NiI_2	17	30	45	6	3	18		
NiBr ₂	54	85	78	37	6	70		
$NiCl_2$	45	63	37	31	11	36		
Cu ₂ O	12	25	53	41	4 4	60		
CuO	12	24	54	41	4	80		
CuI	07	8	67		-	47		
CuBr		23	70	-	-	36		
$CuBr_2$	10	37	76	40	6	40		
CuCl	33	47	74			32		
CuCl ₂	28	51	82		-	28		
FeCl ₃	45	62	39	81	$\begin{array}{c} 60\\ 3\end{array}$	68		
FeBr ₃	46	70	86	12	3	35		

and AC (Fig. 3): CO pressure above 80 atm does not affect the conversion of NC and the isocyanate yield (at 80 atm, the conversion and yield are also independent of the initial NC concentration), while an increase in the CO pressure to 235 atm increases the conversion of AC and the isocyanate yield. Indeed, according to this scheme, the AC conversion and isocyanate yield should increase with increasing CO pressure since the rate of AC carbonylation is roughly proportional to $[PdCl_2]P_{CO}[AC]$. The NC conversion and isocyanate yield may be independent of the CO pressure and initial NC concentration since the rate of NC carbonylation may be proportional to [NC][M][Py].

In the presence of vanadium and molybdenum compounds, nitro compounds are converted to isocyanates, bypassing the formation of AC, apparently as a result of the carbonylation of the intermediate nitrene complexes with the catalyst [3]. Using the property of a series of organic bases to inhibit the carbonylation of AC in the presence of PdCl₂, we found that azo compounds are not intermediates in the conversion of nitro compounds to isocyanates in the absence of vanadium and molybdenum compounds.

EXPERIMENTAL

The carbonylation was carried out in a 0.15-liter steel autoclave in a glass insert (Fig. 2) or without this insert (Figs. 1 and 3, Tables 1-4), in which we loaded 100 mmoles chlorobenzene (solvent) (Figs. 1 and 3, Tables 1-4), or 20 mmoles of this solvent (Fig. 2), 1.5 mmole nitro and azo compounds (Table 4, Fig. 1), 2.4 mmoles of these compounds (Fig. 3, Tables 2 and 3) or 0.3° mmoles of these compounds (Fig. 2), 0.28 mmole PdCl₂ (Figs. 1 and 3, Tables 1-4) or 0.06 mmole PdCl₂ (Fig. 2), 2.5 mmoles pyridine (Fig. 3, Tables 1-3) or the additives (Table 1) and 0.74 mmole additive/(number of metal ions in the formula) inorganic salt or 0.47 mmole organic additive (Tables 2-4) or 0.28 mmole AlCl₃ or FeCl₃ (Fig. 2). The autoclave was flushed with CO and the CO pressure was raised to 100 atm (Tables 3 and 4, second part of Table 1) or 80 atm (Table 2, Figs. 1 and 2) and heated at 200°C (second parts of Tables 1 and 3), 190°C (first part of Table 3), 180°C (Fig. 3, Table 2), 170°C (first part of Table 1, Fig. 1), 160°C (Table 4, Fig. 2) for 1 h (Fig. 2), 45 min (Tables 1 and 4, Fig. 1), 30 min (Table 3), or 20 min (Fig. 3 and Table 2). The reaction products were analyzed by gas—liquid chromatography by analogy to our previous work [3].

CONCLUSIONS

1. In the synthesis of isocyanates by the carbonylation of azo compounds, palladium chloride displays activity without promotors, organic bases inhibit the action of palladium chloride, while Lewis acids activate the palladium chloride pyridine catalyst.

2. Azo compounds are not intermediates in the conversion of nitro compounds to isocyanates in the presence of palladium chloride and pyridine.

3. A scheme was proposed for the activating effect of amines, triphenylphosphine, and compounds of iron, molybdenum, and vanadium added to the palladium catalyst for the synthesis of isocyanates by the carbonylation of nitro compounds.

LITERATURE CITED

- B. K. Nefedov and V. I. Manov-Yuvenskii, Izv. Akad. Nauk SSSR, Ser. Khim., 2597 (1977); 585 (1979).
- A. N. Niyazov, B. K. Nefedov, Kh. O. Khoshdurdyev, and V. I. Manov-Yuvenskii, Dokl. Akad. Nauk SSSR, <u>258</u>, 1120 (1981).
- A. L. Lapidus, V. I. Manov-Yuvenskii, and K. B. Petrovskii, Izv. Akad. Nauk SSSR, Ser. Khim., 2743 (1981); 606 (1983).
- V. I. Manov-Yuvenskii and B. K. Nefedov, Usp. Khim., <u>50</u>, 889 (1981); Khim. Prom., 287 (1983).