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Abstract Structurally diverse 1-aryl-10H-[1,2,4]triazol-

o[30,40:3,4][1,2,4]triazino[5,6-b]indoles 4a–v were synthe-

sized by regiospecific heterocyclizations. The designed

molecular diversity was evaluated in vitro in parallel cell-

based assays for cytotoxicity of viruses multiplication

supporting cell lines and antiviral activity against viruses

representative of two of three genera of the Flaviviridae

family. The compound library was also tested against

Retrovirus (HIV-1), two Picornaviruses (CVB-2 and Sb-1),

and Paramyxoviridae (VSV) representative. Among dou-

ble-stranded RNA (dsRNA) viruses, Reoviridae represen-

tative (Reo-1) was tested. Two representatives of DNA

virus families were also included—HSV-1 (Herpesviridae)

and VV (Poxviridae). The compounds 4m and 4o were

found cytotoxic, having CC50 values ranging from 4 to

30 lM. Moreover, compound 4v has exhibited significant

activity (EC50 = 3 lM) against BVDV.

Keywords 1,2,4-Triazines � Indoles � Triazoles �
In vitro � Cytotoxicity � Antiviral

Introduction

The inherent toxicity and appearance of drug-resistant

viruses restricted the use of most antiviral agents, hence the

identification of novel antivirals and ‘‘lead’’ compounds are

of great interest from which new antivirals could be syn-

thesized (Buckwold et al., 2004, Kossakowski et al., 2009,

Cesarini et al., 2010). A livestock infection by the category

of Pestivirus genus (Flaviviridae family) creates significant

economic losses, and hence the development of safer,

efficacious, and relatively cheap anti-pestiviruses vaccine

is an unmet medical need (Paeshuyse et al., 2006). These

viruses cause a variety of clinical indications, such as ter-

atogenesis, abortion, respiratory problems, chronic wasting

disease, immune system dysfunction, and predisposition to

secondary viral and bacterial infections (Tonelli et al.,

2010). The Flaviviridae family contains viruses with sin-

gle-stranded positive sense RNA genomes (ssRNA?), and

encompasses three genera and several viruses those are

presently not classified to specific genera (Tonelli et al.,
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2010). The Hepacivirus genus includes the hepatitis C

virus (HCV) (Tonelli et al., 2010). Viruses such as GB

virus-A and GB virus-A-like agents, GB virus-D and GBV-

C or hepatitis G virus, which are currently not classified

within the Hepacivirus genus, are closely related to HCV

and represents unassigned members of Flaviviridae (To-

nelli et al., 2010; Carta et al., 2007). Moreover, this family

is also consisting the Flavivirus genus, with viruses, for

instance, Dengue Fever, Yellow Fever (YFV), West Nile,

Japanese encephalitis, and tick-borne encephalitis (TBEV),

and the Pestivirus genus, which consists of Bovine Viral

Diarrhea (BVDV), Border Disease, and Classical Swine

Fever viruses (Carta et al., 2011). Other important ssRNA?

viruses are those belonging to the Picornaviridae family.

These viruses cause a variety of diseases, such as cold,

heart infection, conjunctivitis, meningitis, and hepatitis

(Carta et al., 2007; Carta et al., 2011). This family includes

nine genera, some of which comprises major human

pathogens, such as Enterovirus (including Poliovirus,

Echovirus, Coxsackievirus), Rhinovirus, and Hepatovirus

(Giampieri et al., 2009). Currently, no particular vaccine is

available for the treatment of Picornaviridae infections as

well as for Flaviviridae members, except YFV.

Consequently, the development of novel, efficacious,

and inexpensive antiviral ‘‘lead’’ molecules to combat this

human pathogen is a pressing need (Stachulski et al.,

2011). BVDV is the prototype of the genus because it is

also used as a surrogate for HCV to develop new anti-HCV

agents (Tonelli et al., 2011). We have recently evaluated

various 9-aminoacridines (Tonelli et al., 2011) for in vitro

antiviral activity against a panel of RNA and DNA viruses.

Moreover, we have also probed in vitro a series of new

angular and linear [4,7]phenanthroline N-tricyclic systems

against the ssRNA? viruses (Carta et al., 2007). The

compounds were also evaluated against viruses represen-

tative of an additional genus of ssRNA? genomes [Human

immunodeficiency virus (HIV-1)], of double-stranded

RNA genomes (dsRNA) [Reovirus (Reo-1)], and of single-

stranded, negative-sense RNA genomes (ssRNA-) [respi-

ratory syncytial virus (RSV) and vesicular stomatitis virus

(VSV)]. Notably, phenantrolines were found promising

against members of the Flaviviridae and Picornaviridae

families.

Azoles and azines are ubiquitous heterocycles, which

are well-known for their versatile biological activities (Li

et al., 2009). Importantly, the fusion of the heterocyclic

nuclei enhances the pharmacological activities than its

parent nucleus (Abdel-Rahman et al., 2010). In a search of

novel therapeutic agents, versatile heterocyclic moieties

were appended in the 1,2,4-triazine nucleus via the inter-

action between functionalized 1,2,4-triazines with various

nucleophilic and electrophilic reagents (Abdel-Rahman

et al., 2010). In particular, 1,2,4-triazine motif is exploited

for pharmacological activities, as herbicides and pesticides,

as well as in dyes. In drug discovery, for examples, pyr-

rolo-triazines were found as potent PI3K inhibitors (Wang

et al., 2012) and various kinase inhibitors (Abraham et al.,

2011; Dyckman et al., 2011; Mesaros et al., 2012).

Moreover, they were also found as potent adenosine A2A

antagonists (Congreve et al., 2012), antitumors (Sztanke

et al., 2011), anticonvulsants (Sun et al., 2009), antimala-

rials (Ban et al., 2010), etc. Significant biological activities

were also associated with indole-fused 1,2,4-triazines

(Sivendran et al., 2010; Shelke and Bhosale, 2010; Gupta

et al., 2010; Ashour et al., 2012; Maarouf et al., 2012).

Importantly, the indolo-triazine (Buckwold et al., 2004)

(VP32947) was discovered as viral RNA-dependent RNA-

polymerase (EC50 = 0.03 lM, SI [111). Though remark-

able therapeutic worth of 1,2,4-triazine motif, the screening

in antiviral therapeutic area is still in its infancy (Mod-

zelewska-Banachiewicza and Kaminska, 2001; Elghandour

et al., 2006; Sztanke et al., 2007) (Fig. 1). Inspired by

literature reports, we have envisioned for the syntheses and

screening of a molecular diversity based on 1-aryl-10H-

[1,2,4]triazolo[30,40:3,4][1,2,4]triazino[5,6-b]indoles 4a–v.

Results and discussion

Chemistry

At the outset, compound 2 was synthesized according to

literature described procedure (Joshi and Chand, 1980).

The compounds 3a–v was synthesized by acid-catalyzed

condensation, utilizing aromatic aldehydes bearing ver-

satile electron donor and acceptors. Finally, they were
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Fig. 1 Antiviral activity of 1,2,4-triazines condensed with other heterocycles (1)
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cyclized using thionyl chloride as a cyclizing agent,

afforded the target molecules 4a–v in moderate to good

yields with a wide range of functional group tolerance

(Scheme 1). The title compounds thus obtained generated

contradictions regarding their structural assignment. In

literatures, regioselectivity of electrocyclization of func-

tionalized 1,2,4-triazines, such as N-[1,2,4-triazine-3-yl]

nitrilimines (Shawali and Gomha, 2002), 3-azido-1,2,4-

triazines (Mojzych et al., 2005; Goodman and Paudler,

1977), and 3-hydrazino-1,2,4-triazino[5,6-b]indole (Joshi

and Chand, 1980), revealed that the comparative nucleo-

philicities of N2 or N4 in the 1,2,4-triazine ring governs

the course of orientation. In our case, the cyclization of

compounds 3a–v with one carbon cyclizing precursors

were only be electronically controlled and led to angu-

larly annulated 1,2,4-triazolo[30,40:3,4]-1,2,4-triazino[5,6-

b]indoles (compounds 4a–v), and not linearly cyclized,

1,2,4-triazolo[40,30:2,3]-1,2,4-triazino[5,6-b]indoles. The

mechanism for the preparation of compounds 4a–v is

proposed in Fig. 2. In the absence of steric hindrance in

the compounds 3a–v, the basicity of N4 became pre-

dominant over N2 of the 1,2,4-triazine ring, and hence

forced the orientation to afford angularly cyclized prod-

ucts; however, regio specificity was unaffected by the

nature of the functional groups presents in the compounds

3a–v. The mass spectra of the synthesized compounds

were proved to be most important tool to elucidate the

structures of the molecules. The m/z values of the relevant

fragments suggested about the significant structural fea-

tures like the mode of cyclization and aromatic nature of

the molecules. The appearance of an intense molecular

ion peak revealed the aromatic nature of the triazolo-

triazinoindole fused system, the molecular ion, in this

case, underwent fragmentation with loss of corresponding

benzonitrile, which was due to the benzonitrile di-radical

obtained by initial fragmentation of the triazole ring and

nitrogen molecule. An ion at m/z 103 was obtained by the

loss of nitrogen molecule and HCN (Fig. 3).
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Scheme 1 Synthesis of compounds 4a–v
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Biology

The cytotoxicity and antiviral activities of the compounds

4a–v are summarized in Table 1 against viruses represen-

tative of two of three genera of the Flaviviridae family, i.e.,

Flaviviruses (YFV) and Pestiviruses (BVDV). The title

compounds were also screened against representatives of

other virus families. Among ssRNA? was a Retrovirus

(HIV-1), two Picornaviruses [Coxsackie Virus type B2

(CVB-2), and Poliovirus type-1 Sabin strain (Sb-1)];

among ssRNA- were Paramyxoviridae [Rhabdoviridae,

VSV, RSV] representative. Among dsRNA viruses, was a

Reoviridae representative [Respiratory Enteric Orphan

Virus type-1(Reo-1)]. Two representatives of DNA virus

families were also included: Herpes Simplex type 1 (HSV-

1, Herpesviridae) and Vaccinia Virus (VV, Poxviridae).

The indolo-triazine derivatives were presented antiviral

activities varied from moderate (4a, 4c, and 4p) to signif-

icant (4t and 4v). The data may serve as a good subject for

discussion of the influence of molecular structure of a

compound on its biological activity. It seems that antiviral

activity depends on the factors, such as type of substituents,

regioisomerism, and steric interactions associated with the

parent scaffold. The most active compound 4v (R =

9-anthryl) bearing sterically hindered group exerted EC50

value 3 lM against BVDV strain without cytotoxic

to parent MDBK cell-line at CC50 value [100 lM.

Incorporation of electron-donating group at para position

(4c, R = 4-SMe Ph) and moderately electronegative group

(4p, R = 3-Cl Ph) exerted moderate antiviral activity with

EC50 values 45 and 69 lM against Reo-1 and BVDV

strains without causing cytotoxicity to their parent BHK-21

and MDBK cell lines, respectively. The regioisomerism of

the aryl substituents sincerely affected cytotoxicity and

antiviral activities. As such, 3,4-disubstituted compound 4a

(R = 3,4-diOMe Ph) exerted EC50 value of 55 lM against

Reo-1 strain without being cytotoxic to its parent BHK-21

cell-line at CC50 value [100 lM, while 4t (R = 4-OH,

3-OMe Ph) exerted antiviral activity at EC50 value 90 lM

against BVDV and 25 lM against Reo-1 strains, but

cytotoxic against BHK-21 cell-line with CC50 value

45 lM, whereas 2,5-disubstituted compound 4m was

inactive to all viruses representatives; however, it exerted

cytotoxicity to MT-4, MDBK, BHK-21, and Vero-76 cell

lines with CC50 values 4, 12, 30, and 15 lM, respectively.

In addition, notable cytotoxicities were exerted by the

compounds 4n (R = 3-OMe Ph) with CC50 values 47, 64,

and 65 lM on MT-4, MDBK, and Vero-76, 4o (R = 2-

OMe Ph) to all cell lines with CC50 values 5, 17, 23, and

20 lM, 4p (R = 3-Cl Ph) with CC50 values 29, 55, and

60 lM on MT-4, BHK-21 and Vero-76 cell lines, respec-

tively. Whereas, rest of the compounds were neither active

against any of the virus representative nor cytotoxic to any

cell lines employed.
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Table 1 Cytotoxicity and antiviral activities of compounds 4a–v

Compds MT-4 HIV-1 MDBK BVDV SI1 BHK-

21

YFV Reo-1 Vero-

76

HSV-1 VV VSV CVB-2 Sb-1 RSV

CC50
a

lM

EC50
b

lM

CC50
c

lM

EC50
d

lM

CC50
e

lM

EC50
f

lM

EC50
f

lM

CC50
g

lM

EC50
h

lM

EC50
h

lM

EC50
h

lM

EC50
h

lM

EC50
h

lM

EC50
h

lM

4a [100 [100 [100 [100 – [100 [100 55 [100 [100 [100 [100 [100 [100 [100

4b [100 [100 [100 [100 – [100 [100 [100 [100 [100 [100 [100 [100 [100 [100

4c [100 [100 [100 [100 – [100 [100 45 90 [90 [90 [90 [90 [90 [90

4d [100 [100 [100 [100 – [100 [100 [100 [100 [100 [100 [100 [100 [100 [100

4e [100 [100 [100 [100 – [100 [100 [100 [100 [100 [100 [100 [100 [100 [100

4f [100 [100 [100 [100 – [100 [100 [100 [100 [100 [100 [100 [100 [100 [100
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Table 1 continued

Compds MT-4 HIV-1 MDBK BVDV SI1 BHK-

21

YFV Reo-1 Vero-

76

HSV-1 VV VSV CVB-2 Sb-1 RSV

CC50
a

lM

EC50
b

lM

CC50
c

lM

EC50
d

lM

CC50
e

lM

EC50
f

lM

EC50
f

lM

CC50
g

lM

EC50
h

lM

EC50
h

lM

EC50
h

lM

EC50
h

lM

EC50
h

lM

EC50
h

lM

4g [100 [100 [100 [100 – [100 [100 [100 [100 [100 [100 [100 [100 [100 [100

4h [100 [100 [100 [100 – [100 [100 [100 [100 [100 [100 [100 [100 [100 [100

4i [100 [100 [100 [100 – [100 [100 [100 [100 [100 [100 [100 [100 [100 [100

4j [100 [100 [100 [100 – [100 [100 [100 [100 [100 [100 [100 [100 [100 [100

4k [100 [100 [100 [100 – [100 [100 [100 [100 [100 [100 [100 100 [100 [100

4 l [100 [100 [100 [100 – 100 [100 [100 80 [80 [80 [80 [80 [80 [80

4m 4 [4 12 [12 – 30 [30 [30 15 [15 [15 [15 [15 [15 [15

4n 47 [47 64 [64 – [100 [100 [100 65 [65 [65 [65 [65 [65 [65

4o 5 [5 17 [17 – 23 [23 [23 20 [20 [20 [20 [20 [20 [20

4p 29 [29 [100 69 [1.45 55 [55 [55 60 [60 [60 [60 [60 [60 [60

4q [100 [100 [100 [100 – [100 [100 [100 70 [70 [70 [70 [70 [70 [70

4r [100 [100 [100 [100 – [100 [100 [100 [100 [100 [100 [100 [100 [100 [100

4s [100 [100 [100 [100 – [100 [100 [100 [100 [100 [100 [100 [100 [100 [100

4t 58 [58 [100 90 [1.11 45 [45 25 80 [80 [80 [80 [80 [80 [80

4u [100 [100 [100 [100 – [100 [100 [100 C100 [100 [100 [100 [100 [100 [100

4v 56 [56 [100 3 [33.33 [100 [100 [100 C100 [100 [100 [100 [100 [100 [100

AZTi 50 0.01 – – – – – – – – – – – – –

NM

108j
– – – 1.8 – – 2.5 – – – – – – – –

NM

176k
– – – – – – – – – – – – 23 18 –

M

5255l
– – – – – – – – – – 1.8 – – – –

ACGm – – – – – – – – – 3 – – – – –

Data represent mean value for three independent determinations. Variation among duplicate samples was less than 15 %. Antiviral activity is

given as EC50 (median effective concentration-the concentration of a drug (lM) required to induce a 50 % effect), and cytotoxicity is given as

CC50 (cytotoxic concentration-the amount of a drug (lM) at which 50 % cell become dead). SI (selectivity index) was determined as the ratio

between CC50 and EC50 for MDBK and BVDV (SI1)
a Compd. concentration (lL) required to reduce the viability of mock-infected MT-4 (CD4? human T-cells containing an integrated HTLV-1

genome) cells by 50 %, as determined by the colorimetric MTT method
b Compd. concentration (lL) required to reduce the viability of mock-infected MDBK (bovine normal kidney) cells by 50 %, as determined by

the MTT method
c Compd. concentration (lL) required to reduce the viability of mock-infected BHK (Hamster normal kidney fibroblast) monolayers by 50 %,

as determined by the MTT method
d Compd. concentration (lM) required to reduce the viability of mock-infected VERO-76 (Monkey normal kidney) monolayers by 50 %, as

determined by the MTT
e Compd. concentration (lL) required to achieve 50 % protection of MT-4 cells from the HIV-1-induced cytopathogenicity, as determined by

the MTT method
f Compd. concentration (lL) required to achieve 50 % protection of MDBK cells from the BVDV (Bovine Viral Diarrhea Virus)-induced

cytopathogenicity, as determined by the MTT method
g Compd. concentration (lL) required to achieve 50 % protection of BHK (Kidney fibroblast) cells from the YFV (Yellow Fever Virus) and

Reo (Reovirus-1)-induced cytopathogenicity, as determined by the MTT method
h Compd. concentration (lM) required to reduce the plaque number of HSV-1 (Herpesvirus-1), VV (Vaccinia Virus), VSV (Vesicular Stomatitis

Virus), CVB-2 (Coxsackievirus B2), Sb-1 (Poliovirus 1) and RSV (Respiratory Syncytial Virus) by 50 % in VERO-76 monolayers
i AZT (30-azido-thymidine)
j NM108 (20-b-methyl-guanosine)
k NM176 (20-ethynyl-D-citidine)
l M5255 (mycophenolic acid)
m ACG (acyclo-guanosine)
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Conclusions and future directions

In summary, a versatile 1-aryl-10H-[1,2,4]triazol-

o[30,40:3,4][1,2,4]triazino[5,6-b]indoles were designed,

synthesized, and evaluated in vitro in parallel cell-based

assays for cytotoxicity and antiviral activity against rep-

resentative strains of emergent and re-emergent human and

cattle viral infectious diseases. The screening results

revealed that the compound 4v exerted the most promising

activity with 3 lM EC50 value against BVDV strain devoid

of causing cytotoxicity to its parent MDBK cell-line. While

four distinct candidates 4a, 4c, 4p, and 4t have presented

antiviral activities from moderate to significant range with

diminutive cytotoxicity. In addition to these two deriva-

tives, 4m and 4o exerted significant cytotoxicity against all

RNA virus multiplication supporting cell lines and will be

evaluated for antiproliferative activity against hematolog-

ical and solid tumor cell lines.

Methods and materials

Chemistry

Chemicals and solvents were purchased from commercial

sources and were used without further purification. Melting

points were determined in open capillary tubes using

Electrothermal-9200 melting point apparatus and are

uncorrected. Yields refer to isolated compounds, estimated

to be [95 % pure as determined by 1H-NMR. TLC:

Macherey–Nagel, TLC plates Alugram� Sil G/UV254.

Detection under UV light at 254 nm. 1H-NMR spectra

were recorded on Bruker Avance II 300 MHz spectrometer

in DMSO-d6. Chemical shifts (d) are given in ppm relative

to TMS, coupling constants (J) are in Hz. All IR spectra

were recorded on Shimadzu FTIR 8400 Spectrophotometer

by KBr pellet method. All ESI–MS spectra were recorded

on Shimadzu GCMS-QP2010. The microanalysis was

performed on EuroVector EA3000.

Synthesis of 3-hydrazino-5H-[1,2,4]triazino[5,6-b]indole

(2)

It was prepared according to literature described procedure.

Yields: 60 %, m.p. 275–278 �C (lit. m.p. 276–277 �C)

(Joshi and Chand, 1980).

General procedure for the syntheses of compounds

(3a–v) (Ram et al., 1987; Monge et al., 1987)

The above compounds were synthesized according to lit-

erature described method. To a three-neck flask, substituted

aromatic aldehydes (0.01 mol), compound 2 (0.01 mol)

and glacial acetic acid (10.0 mol%) were added in ethanol

and heated at 80 �C for 5 h. On cooling the reaction mass

at ambient temperature, the crude products were precipitate

out. Ethanol was removed by filtration, and the products

were washed with diethyl ether and n-pentane and dried

under vacuum. No further purification was attempted.

General procedure for the syntheses of compounds (4a–v)

To an appropriate hydrazones 3a–v (5.0 mmol), thionyl

chloride (10 ml) was added under nitrogen atmosphere.

The resulting reaction mixture was heated at 75 �C in oil

bath for 4h. The progress of reaction was checked by TLC

(dichloromethane/methanol, 95/5). The excess of thionyl

chloride was removed by distillation under reduced pres-

sure. The residue was quenched in ice to leave the pre-

cipitates. The crude products were filtered and washed with

water and isopropanol and dried under vacuum to afford

pure title compounds.

1-(3,4-Dimethoxy)phenyl-10H-

[1,2,4]triazolo[30,40:3,4][1,2,4]triazino[5,6-b]indole (4a)

Yields: 77 % as a white solid, m.p. (�C): 289–291 (dec.).

IR (KBr, cm-1): 3352, 3128, 1517, 1487, 1463, 1298, 744.
1H-NMR (300 MHz, DMSO-d6) d = 12.28 (brs, 1H), 8.23

(d, J = 7.5 Hz, 1H, ArH), 8.08 (d, J = 6.0 Hz, 1H, ArH),

7.99 (s, 1H, ArH), 7.74 (t, J = 7.7, 7.2 Hz, 1H, ArH), 7.70

(d, J = 8.1 Hz, 1H, ArH), 7.46 (t, J = 7.8, 7.2 Hz, 1H,

ArH), 7.20 (d, J = 8.4 Hz, 1H, ArH), 3.90 (s, 6H,

2 9 OMe). 13C-NMR (75 MHz, DMSO-d6) d = 158.2,

155.5, 150.3, 149.3, 148.8, 137.9, 125.4, 123.7, 122.5,

119.2, 118.2, 116.9, 114.8, 112.9, 111.9, 109.6, 56.9, 55.2.

ESI–MS: m/z 346, 331, 304, 174, 126, 103, 101. Anal.

calcd for C19H15N6O2: C, 62.42; H, 4.07; N, 24.27. Found:

C, 62.46; H, 4.11; N, 24.32.

1-(4-Methoxy)phenyl-10H-

[1,2,4]triazolo[30,40:3,4][1,2,4]triazino[5,6-b]indole (4b)

Yields: 72 % as a white solid, m.p. (�C): 282–284. IR

(KBr, cm-1): 3412, 3128, 1612, 1581, 1558, 1504, 1257,

840. 1H-NMR (300 MHz, DMSO-d6) d = 13.04 (brs, 1H),

8.38 (d, J = 9.0 Hz, 2H, ArH), 8.33 (d, J = 7.8 Hz, 1H,

ArH), 7.82 (t, J = 7.5, 4.1 Hz, 1H, ArH), 7.58 (d,

J = 8.1 Hz, 1H, ArH), 7.46 (t, J = 7.5, 3.5 Hz, 1H, ArH),

7.24 (d, J = 9.0 Hz, 2H, ArH), 3.90 (s, 3H, OMe). 13C-

NMR (75 MHz, DMSO-d6) d = 158.6, 158.3, 154.5,

151.1, 139.0, 127.1, 125.1, 123.2, 122.0, 119.1, 117.3,

115.7, 114.2, 112.8, 55.9. ESI–MS: m/z 316, 301, 273, 174,

158, 126, 103, 101. Anal. calcd for C18H13N6O: C, 64.55;

H, 3.82; N, 26.57. Found: C, 64.61; H, 3.79, N, 26.62.
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1-(4-Methylsulfanyl)phenyl-10H-

[1,2,4]triazolo[30,40:3,4][1,2,4]triazino[5,6-b]indole (4c)

Yields: 69 % as a yellow solid, m.p. (�C): 241–243. IR

(KBr, cm-1): 3396, 3124, 1618, 1589, 1548, 1367, 891.
1H-NMR (300 MHz, DMSO-d6) d = 12.67 (brs, 1H), 8.23

(d, J = 7.5 Hz, 1H, ArH), 7.80 (d, J = 8.8 Hz, 2H, ArH),

7.71 (t, J = 7.7, 4.0 Hz, 1H, ArH), 7.69 (d, J = 8.1 Hz,

1H, ArH), 7.49 (t, J = 7.8, 4.2 Hz, 1H, ArH), 7.19 (d,

J = 8.4hz, 1H, ArH), 2.45 (s, 3H, SMe). 13C-NMR

(75 MHz, DMSO-d6) d = 158.3, 153.1, 151.0, 139.6,

135.3, 133.1, 131.4, 128.2, 122.3, 121.9, 119.0, 118.1,

115.2, 113.2, 15.3. ESI–MS: m/z 332, 317, 174, 126, 103,

101. Anal. calcd for C18H13N6S: C, 61.43; H, 3.64; N,

25.58. Found: C, 61.49; H, 3.59; N, 25.65.

1-(3-Bromophenyl)-10H-

[1,2,4]triazolo[30,40:3,4][1,2,4]triazino[5,6-b]indole (4d)

Yields: 75 % as a yellow solid, m.p. (�C):[300. IR (KBr,

cm-1): 3409, 3101, 1616, 1535, 1465, 1299, 898. 1H-NMR

(300 MHz, DMSO-d6) d = 12.28 (brs, 1H), 8.34 (t,

J = 3.7, 4.1 Hz, 1H, ArH), 7.72 (d, J = 8.1 Hz, 1H, ArH),

7.54 (t, J = 7.7, 7.2 Hz 1H, ArH), 7.46 (d, J = 4.2 Hz, 1H,

ArH), 7.15 (t, J = 7.7, 3.5 Hz, 1H, ArH), 7.23–6.60 (m,

3H, ArH). 13C-NMR (75 MHz, DMSO-d6) d = 158.2,

154.1, 152.0, 139.2, 133.2, 131.1, 130.1, 129.9, 125.9,

123.7, 123.0, 122.0, 118.1, 117.3, 115.1, 113.4. ESI–MS:

m/z 366, 367, 181, 174, 126, 103. Anal. calcd for

C16H9BrN6: C, 52.62; H, 2.48; N, 23.01. Found: C, 52.69;

H, 2.54; N, 23.05.

1-(4-Fluoro)phenyl-10H-

[1,2,4]triazolo[30,40:3,4][1,2,4]triazino[5,6-b]indole (4e)

Yield: 67 % as a white solid, m.p. (�C): 164–165. IR (KBr,

cm-1): 3410, 3132, 1612, 1588, 1461, 1238, 756. 1H-NMR

(300 MHz, DMSO-d6) d = 12.22 (brs, 1H), 8.08 (d,

J = 6.8 Hz, 2H, ArH), 7.89 (d, J = 6.9 Hz, 1H, ArH),

7.66 (t, J = 7.3, 3.6 Hz, 1H, ArH), 7.55 (d, J = 7.9 Hz,

1H, ArH), 7.39 (t, J = 6.7, 3.6 Hz, 1H, ArH), 7.33 (d,

J = 8.7 Hz, 2H, ArH). 13C-NMR (75 MHz, DMSO-d6)

d = 165.2, 161.2, 159.1, 154.3, 152.4, 139.5, 129.3, 127.9,

124.2, 123.1, 119.2, 118.1, 116.2, 115.1, 113.7. ESI–MS:

m/z 305, 174, 126, 121, 103. Anal. calcd for C16H9FN6: C,

63.16; H, 2.98; N, 27.62. Found: C, 63.22; H, 2.92; N,

27.64.

1-(2-Chloro)phenyl-10H-

[1,2,4]triazolo[30,40:3,4][1,2,4]triazino[5,6-b]indole (4f)

Yield: 70 % as a yellow solid, m.p. (�C): 247–249. IR

(KBr, cm-1): 3410, 3132, 1612, 1588, 1461, 1238, 756.

1H-NMR (300 MHz, DMSO-d6) d = 12.59 (brs, 1H), 8.45

(d, J = 7.9, 1H, ArH), 7.75–7.63 (m, 3H, ArH), 7.55–7.35

(m, 4H, ArH). 13C-NMR (75 MHz, DMSO-d6) d = 157.9,

152.8, 150.2, 139.5, 132.6, 131.5, 129.9, 128.9, 128.8,

127.5, 124.5, 123.0, 119.5, 118.3, 115.7, 113.4. ESI–MS:

m/z 321, 322, 174, 137, 126, 103. Anal. calcd for

C16H9ClN6: C, 59.92; H, 2.83; N, 26.20. Found: C, 59.98;

H, 2.87; N, 26.21.

1-(4-Chloro)phenyl-10H-

[1,2,4]triazolo[30,40:3,4][1,2,4]triazino[5,6-b]indole (4g)

Yield: 73 % as a white solid, m.p. (�C): [300. IR (KBr,

cm-1): 3410, 3118, 1618, 1537, 1470, 1238, 829. 1H-NMR

(300 MHz, DMSO-d6) d = 12.12 (brs, 1H), 8.23 (d,

J = 7.9 Hz, 2H, ArH), 7.65–7.57 (m, 2H, ArH), 7.55 (d,

J = 7.6 Hz, 2H, ArH), 7.51–7.29 (m, 2H, ArH). 13C-NMR

(75 MHz, DMSO-d6) d = 158.3, 153.1, 152.0, 139.0,

135.2, 133.8, 130.5, 128.1, 123.2, 122.3, 119.2, 118.0,

115.3, 113.2. ESI–MS: m/z 322, 321, 174, 137, 126, 103.

Anal. calcd for C16H9ClN6: C, 59.92; H, 2.83; N, 26.20.

Found: C, 59.94; H, 2.85; N, 26.24.

1-(3-Nitro)phenyl-10H-

[1,2,4]triazolo[30,40:3,4][1,2,4]triazino[5,6-b]indole (4h)

Yield: 63 % as a yellow solid, m.p. (�C): [300. IR (KBr,

cm-1): 3408, 3116, 1620, 1523, 1455, 1299, 875. 1H-NMR

(300 MHz, DMSO-d6) d = 12.23 (brs, 1H), 8.67 (t,

J = 3.2 Hz, 1H, ArH), 8.62–8.22 (m, 2H, ArH), 8.19–8.17

(m, 1H, ArH), 7.77–7.63 (m, 2H, ArH), 7.52–7.32 (m, 2H,

ArH). 13C-NMR (75 MHz, DMSO-d6) d = 158.3, 153.5,

152.0, 148.2, 139.4, 133.6, 132.0, 131.1, 124.1, 123.9,

122.8, 120.8, 119.3, 118.2, 113.9, 112.9. ESI–MS: m/z 332,

174, 126, 103. Anal. calcd for C16H9N7O2: C, 58.01; H,

2.74; N, 29.60. Found: C, 58.09; H, 2.81; N, 29.65.

1-(4-Nitro)phenyl-10H-

[1,2,4]triazolo[30,40:3,4][1,2,4]triazino[5,6-b]indole (4i)

Yield: 64 % as a yellow solid, m.p. (�C): 253–255. IR

(KBr, cm-1): 3494, 3116, 1620, 1523, 1461, 1299, 856.
1H-NMR (300 MHz, DMSO-d6) d = 12.19 (brs, 1H),

8.35 (d, J = 7.2 Hz, 2H, ArH), 8.12–8.09 (m, 1H, ArH),

8.02 (d, J = 6.9 Hz, 2H, ArH), 7.59–7.57 (m, 1H, ArH),

7.53-7.35 (m, 2H, ArH). 13C-NMR (75 MHz, DMSO-d6)

d = 158.3, 154.1, 152.1, 147.4, 139.3, 133.1, 125.9,

125.2, 123.1, 122.9, 117.9, 117.2, 115.3, 113.4. ESI–MS:

m/z 332, 174, 126, 103. Anal. calcd for C16H9N7O2: C,

58.01; H, 2.74; N, 29.60. Found: C, 58.05; H, 2.80; N,

29.59.
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1-Phenyl-10H-[1,2,4]triazolo[30,40:3,4][1,2,4]triazino

[5,6-b]indole (4j)

Yield: 62 % as a white solid, m.p. (�C): 221–223. IR (KBr,

cm-1): 3425, 3114, 1614, 1587, 1485, 1230, 750. 1H-NMR

(300 MHz, DMSO-d6) d = 13.03 (1H, brs), 8.43 (d,

J = 6.6 Hz, 2H, ArH), 8.34 (d, J = 7.8 Hz, 1H), 7.82 (t,

J = 7.5, 7.8 Hz, 1H, ArH), 7.67 (m, 3H, ArH), 7.58 (d,

J = 7.8 Hz, 1H, ArH), 7.45 (t, J = 7.5 Hz, 1H, ArH). 13C-

NMR (75 MHz, DMSO-d6) d = 158.6, 154.2, 152.4,

139.4, 131.4, 129.9, 129.0, 126.4, 123.8, 123.1, 119.2,

118.1, 115.2, 113.3. ESI–MS: m/z 285, 176, 126, 103, 101.

Anal. calcd for C16H10N6: C, 67.12; H, 3.52; N, 29.35.

Found: C, 67.15; H, 3.57; N, 29.41.

1-(2-Nitro)phenyl-10H-

[1,2,4]triazolo[30,40:3,4][1,2,4]triazino[5,6-b]indole (4k)

Yield: 57 % as a yellow solid, m.p. (�C): 279–281. IR

(KBr, cm-1): 3404, 3124, 1610, 1583, 1465, 1220, 846.
1H-NMR (300 MHz, DMSO-d6) d = 12.21 (brs, 1H, NH

exchangeable), 8.15–7.99 (m, 3H, ArH), 7.91–7.67 (m, 3H,

ArH), 7.51–7.31 (m, 2H, ArH). 13C-NMR (75 MHz,

DMSO-d6) d = 156.3, 152.6, 151.0, 149.9, 139.2, 134.5,

130.4, 127.0, 126.4, 123.8, 123.0, 122.4, 119.5, 118.1,

115.2, 111.9. ESI–MS: m/z 332, 174, 126, 103. Anal. calcd

for C16H9N7O2: C, 58.01; H, 2.74; N, 29.60. Found: C,

58.07; H, 2.73; N, 29.63.

1-(3-Phenoxy)phenyl-10H-

[1,2,4]triazolo[30,40:3,4][1,2,4]triazino[5,6-b]indole (4l)

Yield: 59 % as a white solid, m.p. (�C): 283–285. IR (KBr,

cm-1): 3434, 3126, 1610, 1563, 1400, 1225, 750. 1H-NMR

(300 MHz, DMSO-d6) d = 12.17 (brs, 1H, NH

exchangeable), 8.14–8.07 (m, 2H, ArH), 7.63–7.51 (m, 3H,

ArH), 7.47–7.29 (m, 4H, ArH), 7.25–7.12 (m, 3H, ArH).
13C-NMR (75 MHz, DMSO-d6) d = 158.5, 157.1, 156.0,

154.3, 152.7, 139.8, 133.4, 131.1, 130.5, 123.9, 123.3,

122.6, 121.9, 121.2, 119.7, 118.0, 117.8, 115.6, 115.0,

111.7. ESI–MS: m/z 379, 195, 126, 103. Anal. calcd for

C22H14N6O: C, 69.83; H, 3.73; N, 22.21. Found: C, 69.87;

H, 3.79; N, 22.24.

1-(2,5-Dimethoxy)phenyl-10H-

[1,2,4]triazolo[30,40:3,4][1,2,4]triazino[5,6-b]indole (4m)

Yield: 72 % as a white solid, m.p. (�C): 249–250. IR (KBr,

cm-1): 3434, 3128, 1620, 1552, 1400, 1271, 894. 1H-NMR

(300 MHz, DMSO-d6) d = 12.17 (brs, 1H, NH

exchangeable), 8.14–8.11 (m, 2H, ArH), 7.67–7.56 (m, 2H,

ArH), 7.34–7.31 (m, 1H, ArH), 6.98 (d, J = 6.9 Hz, 1H,

ArH), 6.81 (d, J = 6.2 Hz, 1H, ArH), 3.95 (s, 3H, OMe),

3.89 (s, 3H, OMe). 13C-NMR (75 MHz, DMSO-d6)

d = 160.1, 155.4, 152.4, 150.0, 139.3, 130.1, 123.1, 122.9,

118.3, 116.2, 115.2, 112.6, 110.1, 107.7, 56.6, 55.9. ESI–

MS: m/z 346, 331, 304, 174, 126, 103, 101. Anal. calcd for

C19H15N6O2: C, 62.42; H, 4.07; N, 24.27. Found: C, 62.45;

H, 4.11; N, 24.32.

1-(3-Methoxy)phenyl-10H-

[1,2,4]triazolo[30,40:3,4][1,2,4]triazino[5,6-b]indole (4n)

Yield: 69 % as a yellow solid, m.p. (�C): 205–207. IR

(KBr, cm-1): 3404, 3143, 1608, 1554, 1456, 1315, 885.
1H-NMR (300 MHz, DMSO-d6) d = 12.20 (brs, 1H, NH

exchangeable), 8.14–8.10 (m, 2H, ArH), 7.85–7.77 (m, 3H,

ArH), 7.41–7.25 (m, 3H, ArH), 3.91 (s, 3H, OMe). 13C-

NMR (75 MHz, DMSO-d6) d = 162.2, 158.3, 154.1,

152.3, 139.3, 131.2, 128.4, 123.2, 122.8, 118.9, 118.7,

117.8, 115.9, 113.9, 112.7, 112.0, 55.6. ESI–MS: m/z 316,

301, 273, 174, 158, 126, 103, 101. Anal. calcd for

C18H13N6O: C, 64.55; H, 3.82; N, 26.57. Found: C, 64.59;

H, 3.84; N, 26.62.

1-(2-Methoxy)phenyl-10H-

[1,2,4]triazolo[30,40:3,4][1,2,4]triazino[5,6-b]indole (4o)

Yield: 73 % as a yellow solid, m.p. (�C): 225–227. IR

(KBr, cm-1): 3423, 3124, 1616, 1587, 1483, 1253, 735.
1H-NMR (300 MHz, DMSO-d6) d = 12.21 (brs, 1H, NH

exchangeable), 8.17–8.13 (m, 2H, ArH), 7.68–7.63 (m, 2H,

ArH), 7.50–7.22 (m, 2H, ArH), 7.35–7.05 (m, 2H, ArH),

3.94 (s, 3H, OMe). 13C-NMR (75 MHz, DMSO-d6)

d = 158.1, 153.3, 152.1, 151.9, 139.3, 128.8, 128.5, 124.4,

123.8, 123.3, 119.2, 118.8, 118.5, 114.4, 114.2, 113.1,

55.7. ESI–MS: m/z 316, 301, 273, 174, 158, 126, 103, 101.

Anal. calcd for C18H13N6O: C, 64.55; H, 3.82; N, 26.57.

Found: C, 64.60; H, 3.80; N, 26.61.

1-(3-Chloro)phenyl-10H-

[1,2,4]triazolo[30,40:3,4][1,2,4]triazino[5,6-b]indole (4p)

Yield: 68 % as a white solid, m.p. (�C): 234–236. IR (KBr,

cm-1): 3419, 3132, 1608, 1585, 1477, 1232, 896. 1H-NMR

(300 MHz, DMSO-d6) d = 12.23 (brs, 1H, NH

exchangeable), 8.15–8.11 (m, 2H, ArH), 8.01–7.97 (m, 2H,

ArH), 7.76–7.62 (m, 1H, ArH), 7.45–7.37 (m, 1H, ArH),

7.34–7.21 (m, 2H, ArH). 13C-NMR (75 MHz, DMSO-d6)

d = 158.3, 155.1, 152.1, 139.4, 134.2, 131.4, 130.1, 128.3,

127.2, 125.2, 124.3, 123.7, 119.3, 118.1, 115.4, 111.9.

ESI–MS: m/z 322, 321, 174, 137, 126, 103. Anal. calcd for

C16H9ClN6: C, 59.92; H, 2.83; N, 26.20. Found: C, 59.97;

H, 2.87; N, 26.26.
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1-(2-Hydroxy)phenyl-10H-

[1,2,4]triazolo[30,40:3,4][1,2,4]triazino[5,6-b]indole (4q)

Yield: 56 % as a yellow solid, m.p. (�C): [300 (dec.). IR

(KBr, cm-1): 3404, 3120, 1614, 1589, 1539, 1253, 740.
1H-NMR (300 MHz, DMSO-d6) d = 12.18 (brs, 1H, NH

exchangeable), 8.13–8.10 (m, 2H, ArH), 7.67–7.61 (m, 1H,

ArH), 7.57–7.55 (m, 1H, ArH), 7.47–7.31 (m, 2H, ArH),

7.24–7.07 (m, 2H, ArH), 4.11 (brs, 1H, OH exchangeable).
13C-NMR (75 MHz, DMSO-d6) d = 157.4, 154.3, 153.1,

152.1, 139.2, 130.5, 129.7, 124.1, 122.7, 121.5, 119.7,

119.1, 118.1, 115.2, 113.1, 111.3. ESI–MS: m/z 303, 174,

126, 103. Anal. calcd for C16H10N6O: C, 63.57; H, 3.33; N,

27.80. Found: C, 63.63; H, 3.37; N, 27.78.

1-(4-Hydroxy)phenyl-10H-

[1,2,4]triazolo[30,40:3,4][1,2,4]triazino[5,6-b]indole (4r)

Yield: 53 % as a yellow solid, m.p. (�C): [300 (dec.). IR

(KBr, cm-1): 3406, 3136, 1608, 1554, 1458, 1272, 844.
1H-NMR (300 MHz, DMSO-d6) d = 12.20 (brs, 1H, NH

exchangeable), 8.09–8.05 (m, 2H, ArH), 7.95 (d,

J = 6.6 Hz, 2H, ArH), 7.67–7.62 (m, 1H, ArH), 7.54–7.49

(m, 1H, ArH), 7.27–7.21 (m, 2H, ArH), 6.83 (d,

J = 6.5 Hz, 2H, ArH), 5.21 (brs, 1H, OH exchangeable).
13C-NMR (75 MHz, DMSO-d6) d = 158.8, 157.3, 154.2,

152.1, 139.0, 128.3, 123.1, 122.3, 122.9, 119.4, 118.2,

115.3, 114.4, 113.2. ESI–MS: m/z 303, 174, 126, 103.

Anal. calcd for C16H10N6O: C, 63.57; H, 3.33; N, 27.80.

Found: C, 63.62; H, 3.35; N, 27.82.

1-(3-Hydroxy)phenyl-10H-

[1,2,4]triazolo[30,40:3,4][1,2,4]triazino[5,6-b]indole (4s)

Yield: 50 % as a yellow solid, m.p. (�C): 254–256. IR

(KBr, cm-1): 3304, 3136, 1610, 1554, 1490, 1319, 877.
1H-NMR (300 MHz, DMSO-d6) d = 12.18 (brs, 1H, NH

exchangeable), 8.14–8.11 (d, J = 7.2 Hz, 2H, ArH),

7.84–7.67 (m, 2H, ArH), 7.50–7.38 (m, 2H, ArH),

7.29–6.93 (m, 2H, ArH), 4.48 (brs, 1H, OH exchangeable).
13C-NMR (75 MHz, DMSO-d6) d = 158.5, 157.1, 154.1,

151.9, 139.1, 131.3, 130.9, 122.8, 122.4, 119.9, 118.4,

117.5, 117.2, 115.2, 114.1, 112.2. ESI–MS: m/z 303, 174,

126, 103. Anal. calcd for C16H10N6O: C, 63.57; H, 3.33; N,

27.80. Found: C, 63.60; H, 3.36; N, 27.87.

1-(3-Methoxy-4-Hydroxy)phenyl-10H-

[1,2,4]triazolo[30,40:3,4][1,2,4]triazino[5,6-b] indole (4t)

Yield: 70 % as a yellow solid, m.p. (�C): 258–260. IR

(KBr, cm-1): 3404, 3128, 1609, 1560, 1460, 1288, 788.
1H-NMR (300 MHz, DMSO-d6) d = 12.17 (brs, 1H, NH

exchangeable), 8.15–8.07 (m, 1H, ArH), 7.63–7.61 (m, 1H,

ArH), 7.50–7.45 (m, 2H, ArH), 7.35–7.17 (m, 2H, ArH),

6.95–6.89 (m, 1H, ArH), 4.87 (brs, 1H, OH exchangeable),

3.96 (s, 3H, OMe). 13C-NMR (75 MHz, DMSO-d6)

d = 158.4, 154.5, 152.1, 149.1, 148.9, 139.0, 123.1, 122.9,

122.1, 120.1, 118.9, 118.2, 115.3, 113.1, 112.7, 110.1,

57.2. ESI–MS: m/z 332, 317, 174, 126, 103. Anal. calcd for

C17H12N6O2: C, 61.44; H, 3.64; N, 25.29. Found: C, 63.49;

H, 3.65; N, 25.32.

1-(4-Methyl)phenyl-10H-

[1,2,4]triazolo[30,40:3,4][1,2,4]triazino[5,6-b]indole (4u)

Yield: 71 % as a white solid, m.p. (�C): 287–289. IR (KBr,

cm-1): 3419, 3126, 1610, 1554, 1498, 1220, 844. 1H-NMR

(300 MHz, DMSO-d6) d = 12.20 (brs, 1H, NH

exchangeable), 8.59 (d, J = 7.1 Hz, 2H, ArH), 8.08–8.05

(m, 1H, ArH), 7.65–7.54 (m, 2H, ArH), 7.37–7.33 (m, 1H,

ArH), 7.25 (d, J = 6.8 Hz, 2H, ArH), 2.21 (s, 3H, Me).
13C-NMR (75 MHz, DMSO-d6) d = 158.7, 153.1, 151.2,

139.2, 137.2, 131.7, 129.8, 125.7, 123.9, 122.1, 119.2,

117.8, 115.3, 113.2, 20.9. ESI–MS: m/z 301, 174, 126, 117,

103. Anal. calcd for C17H12N6: C, 67.99; H, 4.03; N, 27.98.

Found: C, 68.03; H, 4.09; N, 27.95.

1-(9-Anthryl)-10H-

[1,2,4]triazolo[30,40:3,4][1,2,4]triazino[5,6-b]indole (4v)

Yield: 76 % as a yellow solid, m.p. (�C): [300 (dec.). IR

(KBr, cm-1): 3404, 3128, 1614, 1554, 1480, 1271, 759. 1H-

NMR (300 MHz, DMSO-d6) d = 12.37 (brs, 1H, NH

exchangeable), 7.72 (d, J = 7.1 Hz, 1H, ArH), 7.68 (t,

J = 6.8, 3.4hz, 1H, ArH), 7.62 (d, J = 7.8 Hz, 1H, ArH),

7.51 (t, J = 7.2, 3.3 Hz, 1H, ArH), 7.40–6.56 (m, 11H,

ArH). 13C-NMR (75 MHz, DMSO-d6) d = 156.2, 152.2,

141.3, 139.3, 135.3, 133.4, 131.3, 130.1, 127.5, 126.9, 126.2,

125.2, 123.1, 122.2, 119.2, 118.3, 115.2, 113.1. ESI–MS: m/

z 387, 279, 174, 126, 103. Anal. calcd for C24H14N6: C,

74.60; H, 3.65; N, 21.75. Found: C, 74.67; H, 3.70; N, 21.81.

Biology

Cell-based assays

Compounds were dissolved in DMSO at 100 mM and then

diluted in culture medium. Cell lines were purchased from

American Type Culture Collection (ATCC). The absence

of mycoplasma contamination was checked periodically by

the Hoechst staining method. Cell lines supporting the

multiplication of RNA viruses were the following: CD4?

human T-cells containing an integrated HTLV-1 genome

(MT-4); Madin Darby Bovine Kidney (MDBK); Baby

Hamster Kidney (BHK-21); and Monkey kidney (Vero 76)

cells.
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Cytotoxicity assays

The compounds were probed for their in vitro cytotoxicity

and antiviral activities against representatives of different

virus families by cell-based assays. Compounds were dis-

solved in DMSO at 100 mM and then diluted in culture

medium. The cytotoxicity tests were run in parallel with

antiviral assays. MDBK, BHK, and Vero 76 cells were

resuspended in 96-multi-well plates at an initial density of

6 9 105, 1 9 106, and 5 9 105 cells/ml, respectively, in

maintenance medium, with or without serial dilutions of

test compounds. Cell viability was determined after

48–120 h at 37 �C in a humidified CO2 (5 %) atmosphere

by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazo-

lium bromide (MTT) method. The cell numbers of Vero 76

monolayers were determined by staining with the crystal

violet dye. For cytotoxicity evaluations, exponentially

growing cells derived from human hematological tumors

[CD4? human T-cells containing an integrated HTLV-1

genome (MT-4)] were seeded at an initial density of

1 9 105 cells/ml in 96-well plates in RPMI-1640 medium,

supplemented with 10 % fetal calf serum (FCS), 100 U/ml

penicillin G, and 100 lg/ml streptomycin. Cell cultures

were then incubated at 37 �C in a humidified, 5 % CO2

atmosphere in the absence or presence of serial dilutions of

test compounds. Cell viability was determined after 96 h at

37 �C by MTT method (Pauwels et al., 1998).

Antiviral assays

The activity of compounds against HIV-1 was based on the

inhibition of virus-induced cytopathogenicity in MT-4 cells

acutely infected with a multiplicity of infection (m.o.i.) of

0.01. Briefly, RPMI (50 ll) containing 1 9 104 MT-4 was

added to each well of flat-bottom microtitre trays con-

taining RPMI (50 ll), with or without serial dilutions of

test compounds. Then, HIV-1 suspension (20 ll) contain-

ing 100 CCID50 was added. After 4-days incubation, cell

viability was determined by MTT method. Activity of

compounds against YFV and Reo-1 was based on the

inhibition of virus-induced cytopathogenicity in acutely

infected BHK-21 cells. Activities against BVDV, in

infected MDBK cells, were also based on inhibition of

virus induced cytopathogenicity. BHK and MDBK cells

were seeded in 96-well plates at a density of 5 9 104 and

3 9 104 cells/well, respectively, and were allowed to form

confluent monolayers by incubating overnight in growth

medium at 37 �C in a humidified CO2 (5 %) atmosphere.

Cell monolayers were then infected with 50 lL of a proper

virus dilution (in serum-free medium) to give a

m.o.i = 0.01. One hour later, MEM Earle’s medium

(50 lL), supplemented with inactivated FCS, 1 % final

concentration, with or without serial dilutions of test

compounds, were added. After 3–4 days incubation at

37 �C, cell viability was determined by the MTT method

(Pauwels et al., 1998). Activity of compounds against

CVB-2 strain, Sb-1, RSV, VSV, VV, and HSV-1, in

infected Vero 76 cells, was determined by plaque reduction

assays in Vero 76-cell monolayers. To this end, Vero 76

cells were seeded in 24-well plates at a density of

2 9 105 cells/well and were allowed to form confluent

monolayers by incubating overnight in growth medium at

37 �C in a humidified CO2 (5 %) atmosphere. Then,

monolayers were infected with appropriate virus dilutions

(250 ll) to give 50–100 PFU/well. Following the removal

of unadsorbed virus, Dulbecco’s modified Eagle’s medium

(500 ll), supplemented with 1 % inactivated FCS and

0.75 % methyl cellulose, with or without serial dilutions of

test compounds, were added. Cultures were incubated at

37 �C for 2 (Sb-1 and VSV) or 3 (CVB-2, VV and HSV-1)

or 5 days (RSV) and then fixed with PBS containing 50 %

ethanol and 0.8 % crystal violet, washed, and air-dried.

Plaques were then counted. 50 % effective concentrations

(EC50) were calculated by linear regression technique. The

cytotoxicity was evaluated in parallel with the antiviral

activity. AZT (30-Azido-thymidine), NM 108 (20-b-Methyl-

guanosine), NM 176 (20-Ethynyl-D-citidine), M 5255

(Mycophenolic acid), and ACG (Acyclo-guanosine) were

used as reference inhibitors of ssRNA?, ssRNA2, and

DNA viruses, respectively.
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