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A series of five new hexaalkylthiohexaazatriphenylenes 2a-e has been synthe-

sized. Their thermotropic behaviour has been investigated and compared

with the corresponding series of hexaalkylthiotriphenylenes 1a-e and

hexaalkylthiohexaazatrinaphthylenes 3a-e. Unexpectedly, hexaalkylthio-

hexaazatriphenylenes 2a-e, hexaalkylthiotriphenylenes 1d-e and hexaalkyl-

thiohexaazatrinaphthylenes 3e, do not form columnar liquid crystalline

mesophases.

Keywords: discotics; thermotropic liquid crystals; columnar mesophases; semiconductors

INTRODUCTION

A wide scientific and technological interest in discotic liquid crystals as one
dimensional semiconductors has emerged from the discovery that
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2,3,6,7,10,11-hexahexylthiotriphenylene (1a), in a highly ordered helical
(H) mesophase, exhibits a charge carrier mobility (m) on the order of
m¼ 0.1 cm2V�1s�1 [1,2]. In the last decade, the charge carrier mobilities of
several mesogens based on hexabenzocoronene, triphenylene, and phtha-
locyanine aromatic cores have been studied [3]. Values of m as high as
0.5 cm2V�1s�1 have been reported for the columnar mesophase of hexa-
benzocoronene derivatives [4]. Such mobility approaches the correspond-
ing value for the intersheet mobility in graphite (m� 3 cm2V�1s�1) and
matches those of single crystals of aromatic compounds [4]. As many other
conjugated organic materials, most discotic mesogens reported so far have
in common to be better hole carriers than electron carriers [3]. Only a few
examples of electron carrier discotic mesogens exist to date [5,6] creating,
therefore, the need for new materials.

Here, we report and discuss the syntheses and mesophase character-
isation of discotics 1a-e, 2a-e, and 3a-e (Figure 1), specially designed to
carry electrons [6]. The presence of six nitrogen atoms in their aromatic
core increases the first reduction potential facilitating electron injection and
collection [7]. Moreover, thioalkyl side chains centre the LUMO orbital on
the aromatic core leading to large LUMO-LUMO overlap between stacked
disks, as recently shown by advanced quantum chemical calculations [8].

RESULTS AND DISCUSSION

Synthesis

The synthesis of mesogens 1a-d and 3a-d has previously been reported
[6,9]. Compounds 1e and 3e are new [10,11]. They have been prepared

FIGURE 1 Chemical structure of discotics 1a-e, 2a-e, and 3a-e.
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following a similar procedure to that used in the syntheses of 1a-d and 3a-d.
The synthesis of compounds 2a-d is based on a two step synthetic pathway
(Scheme 1). The first step is a condensation of hexaketone 4 with an excess
of diaminomaleonitrile (5) in refluxing glacial acetic acid [12]. The second
step consists in a six-fold substitution of the cyano leaving groups by
alkylthiolate in rather mild conditions, i.e. in dimethylformamide in pre-
sence potassium carbonate at 85�C. The yield of this second step after
column chromatography purification is rather low. Attempts to increase the
substitution yield by varying the reaction conditions have not afforded
better results. However, one calculates a yield per substitution of cyano
function of 67%.

Thermotropic Properties

The thermotropic properties of compounds 1e, 2a-e, and 3e were studied
by differential scanning calorimetry (DSC) and polarised optical micro-
scopy (POM). Results are collected in Table 1.

The series of compounds 1a-d and 2a-d share very comparable shape,
diameter, volume, number of atoms and the absence of permanent dipole.
The only difference between these two series of compounds arises from the
distribution of partial charges on the conjugated core. Surprisingly enough,
hexaazatriphenylenes 2a-c do not form liquid crystalline phases contrary to
the corresponding well-known triphenylene compounds 1a-c. Moreover
compounds 2a-c melt at higher temperature than the clearing temperature
of mesogens 1a-c, indicating a higher lattice energy. In contrast to hexa-
azatriphenylenes 2a-d, all the larger hexaazatrinaphtalenes 3a,d exhibit at
least one liquid crystalline mesophase before decomposition around 250�C.
One also notices the extreme dependence of the phase transitions of 3a,d

SCHEME 1 Synthetic pathway to molecules 2a-e, i) glacial acetic acid, reflux for 2

hours, ii) DMF/K2CO3, 85
�C for 24 hours.
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on the chain length. Ethyl-hexylthioether side chains have also been
introduced on compounds 1e, 2e and 3e with the hope to depress the
transition temperature to the isotropic melt. Again unexpected but repro-
ducible results were obtained. Compounds 1e and 2e form amorphous
phases whereas 3e exhibits only crystalline phases until decomposition.

CONCLUSIONS

A series of new disk-like hexaazatriphenylenes 2a-e have been synthesized.
The comparison of the thermal behaviour of 2a-c with that of structurally
related discotic mesogens, i.e. 1a-c and 3a-c stresses the subtle dependence
of thermotropic properties on minor changes of the chemical structures.
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