TWO XANTHONES FROM POLYGALA TENUIFOLIA

YUKINOBU IKEYA, KO SUGAMA, MINORU OKADA, and HIROSHI MITSUHASHI

Research Institute for Biology & Chemistry, Tsumura & Co., 3586 Yoshiwara Ami-machi, Inashiki-gun, Ibaraki 300-11, Japan

(Received 22 October 1990)

Key Word Index-Polygala tenuifolia; Polygalaceae; roots; xanthones; onjixanthone I; onjixanthone II.

Abstract—Two new xanthones, onjixanthones I and II, and four known xanthones, 1,6-dihydroxy-3,7-dimethoxyxanthone, 1,7-dihydroxy-3-methoxyxanthone, 1,6-dihydroxy-3,5,7-trimethoxyxanthone and 1-hydroxy-3,6,7trimethoxyxanthone were isolated from roots of *Polygala tenuifolia*. The structures of these xanthones were established on the basis of chemical studies and spectral evidence including 2D NMR and NOE studies.

INTRODUCTION

The roots of Polygala tenuifolia are used as an expectorant, tonic and sedative agent under the names 'Onji' in Japan and 'Yuan zhi' in China. Eight xanthones, 1,2,3,7-tetramethoxyxanthone (7), 1,2,3,6,7-pentamethoxyxanthone (8), 6-hydroxy-1,2,3,7-tetramethoxyxanthone (9), 1,7-dihydroxyxanthone (10), 1,7-dimethoxyxanthone (11), 1,7-dihydroxy-2,3-dimethoxyxanthone (12), 1-hydroxy-3,7-dimethoxyxanthone, 1,7-dimethoxy-2,3-methylenedioxyxanthone have been isolated from this plant by Ito et al. [1] and Liu et al. [2]. In addition to these compounds, we have now isolated two new xanthones, onjixanthone I(1) and onjixanthone II(2), and four known xanthones, 1,6-dihydroxy-3,7-dimethoxyxanthone (3), 1,7-dihydroxy-3-methoxyxanthone (4), 1,6dihydroxy-3,5,7-trimethoxyxanthone (5) and 1-hydroxy-3,6,7-trimethoxyxanthone (6).

RESULTS AND DISCUSSION

The methanolic extract of P. tenuifolia was separated into an ether soluble part, a n-BuOH soluble part and water soluble part. The ether soluble part was further fractionated by silica gel to give 12 xanthones (1-12). Compounds 7-12 were identified by comparison of mp. IR, UV, ¹H and ¹³C NMR data [1-6]. Compounds 3-6 were identified as 1,6-dihydroxy-3,7-dimethoxyxanthone, 1,7-dihydroxy-3-methoxyxanthone, 1,6-dihydroxy-3,5,7trimethoxyxanthone and 1-hydroxy-3,6,7-trimethoxyxanthone, respectively, by comparing their spectral data (UV, IR, mass, ¹H NMR (Table 1)) with the literature [7-10]. The structures of compounds 3-6 were also supported by ¹³C NMR spectra and those of their acetates 3a-6a (Table 2); carbon assignments were based on ¹H-¹³C COSY and COLOC spectra and the literature values [4, 11, 12]. In the ¹³C NMR spectra of compounds 3-6 and 3a-6a, the replacement of a hydroxyl group by an acetoxyl group produced an upfield shift of 7.2-12.7 ppm at the ipso carbon.

Onjixanthone I(1) was obtained as yellow needles, mp 237-240°, $C_{16}H_{14}O_{0}$. Its UV spectrum (λ_{max} 241.4, 253.4, 279.6, 311.4 and 355.8 nm) was similar to that of 1,2,3,7-tetramethoxyxanthone (7) (λ_{max} 242, 256, 280, 310 and

 $R^1 =$ $R^2 = R^3 = OMe, R^4 = R^5 = H, R^6 = OH$ 2 $R^3 = R^5 = OH, R^2 = R^6 = OMe, R^4 = H$ $R^1 =$ 2a R³ = $\mathbf{R}^{1} =$ $R^5 = OCH_2Ph, R^2 = R^6 = OMe, R^4 = H$ 3 $R^1 =$ R\$ = OH, $R^3 = R^6 = OMe$, $R^2 = R^4 = H$ 3a R1 = $R^5 = OAc$, $R^3 = R^6 = OMe$, $R^2 = R^4 = H$ 4 $R^{1} =$ $R^6 = OH, R^2 = R^4 = R^5 = H, R^3 = OMe$ 49 $R^6 = OAc, R^2 = R^4 = R^5 = H, R^3 = OMe$ $R^1 =$ 5 $R^1 = R^5 = OH, R^2 = H, R^3 = R^4 = R^6 \approx OMe$ 59 $R^1 = R^5 = OAc$, $R^2 = H$, $R^3 = R^4 = R^6 = OMe$ OH, $R^2 = R^4 = H$, $R^3 = R^5 = R^6 = OMe$ $R^1 =$ OAc, $R^2 = R^4 = H$, $R^3 = R^5 = R^6 = OMe$ 7 $R^1 =$ $R^3 = R^6 = OMe, R^4 = R^5 = H$ $R^{2} =$ $R^3 = R^5 = R^6 = OMe, R^4 = H$ 8 $R^{1} =$ $R^{2} =$ 0 **P**1 = $R^2 = R^3 = R^6 = OMe, R^4 = H, R^5 = OH$ 10 R¹ = $R^6 = OH, R^2 = R^3 = R^4 = R^5 = H$ $R^1 = R^6 = OMe$, $R^2 = R^3 = R^4 = R^5 = H$ 11 12 $R^1 = R^6 = OH$, $R^2 = R^3 = OMe$, $R^4 = R^5 = H$

355 nm) [1]. The ¹H NMR spectrum (Table 1) showed the presence of three methoxyl groups (δ 3.88, 3.92 and 4.15) and a hydroxyl group (δ 5.02). The downfield aromatic proton signal assignable to the H-8 signal showed *meta-para* coupling, indicating the presence of a C-7 substituent in 1. Therefore, the *ortho-meta* coupled aromatic proton signal at δ 7.55 and the *ortho-para* coupled aromatic proton signal at δ 7.51 were assigned to H-6 and H-5, respectively. Methylation of 1 afforded a monomethyl ether, C₁₇H₁₆O₆, which was identified as 1,2,3,7tetramethoxyxanthone (7) by direct comparison with an authentic sample. This indicated that 1 corresponds with a xanthone possessing one hydroxyl group and three methoxyl groups at the C-1, C-2, C-3 and C-7 positions, respectively.

Compound	1-Subst.	H-2 4	H-4	H-5 44	H-6	H-8	OMe	но	, Ac
ninodilloo	n	3		au	77	aa	•	s	s
1*†	4.15 (OMe)	Ι	6.85 s	7.51 (8.9, 0.5)	7.55 (8.9, 2.9)	8.20 (2.9, 0.5)	3.88, 3.92	5.02	
2*	14.09 (OH)	ļ	6.78 s	7.17 s		7.81 s	3.77, 4.00	ļ	I
3*	13.84 (OH)	6.54 (2.4)	6.61 d (2.4)	7.19 s	ł	7.78 s	3.75, 3.76		
3at	2.48 (Ac)	6.59 (2.4)	6.79 d (2.4)	7.18 s	I	7.71 s	3.91, 3.92	I	2.36
4	12.85 (OH)	6.37 (2.1)	6.60 d (2.1)	7.49 d (9.0)	7.32 (9.0, 3.0)	7.43 d (3.0)	3.88	10.05	I
4a	2.47 (Ac)	6.59 (2.5)	6.81 d (2.5)	7.42 (9.0, 0.9)	7.40 (9.0, 2.4)	7.91 (2.4, 0.9)	3.92	ļ	2.32
5*	13.80 (OH)	6.74 (2.4)	6.62 d (2.4)	I		7.64 s	3.76, 3.78, 4.13		I
Sat	2.48 (Ac)	6.61 (2.5)	6.87 d (2.5)			7.47 s	3.90, 3.93, 4.04	ļ	2.41
9	12.98 (OH)	6.33 (2.4)	6.37 d (2.4)	6.83 s		7.52 s	3.88, 3.98, 4.00		
6a	2.49 (Ac)	6.80 (2.2)	6.59 d (2.2)	6.85 s	1	7.58 s	3.92, 3.97, 4.00		
7	4.03 (OMe)		6.72 s	7.33 d (9.2)	7.24 (9.2, 2.9)	7.68 d (2.9)	3.90, 3.92, 3.98		ļ
80	4.03 (OMe)	:	6.70 s	6.82 s	:	7.65 s	3.92, 3.97, 3.98	;	
							4.00		
*Compound +Assignment ‡Compound J (in Hz) in p	s measured in pyr s confirmed by N measured in DM parentheses.	ridine-d ₅ . OESY. SO-d ₆ .							

Table 1. ¹H NMR spectral data of compounds 1-8, 3a, 4a, 5a and 6a (in CDCl₃, 500 MHz)

The NOESY spectrum of 1 (in pyridine) showed appreciable NOE between the singlet aromatic proton (H-4) signal at $\delta 6.85$ and the methoxyl signal at $\delta 3.88$, which was assigned to the C-3 methoxyl signal; no NOE between each of three methoxyl signals and the H-6 and H-8 signals was observed. This indicated the presence of a hydroxyl group at the C-7 position in 1. Furthermore, the presence of a C-7 hydroxyl group in 1 was supported by the ¹³C NMR spectrum (Table 2). The C-4b, C-5, C-6, C-7, C-8 and C-8a shifts in the ¹³C NMR spectrum of 1 are essentially the same as those of 1,7-dihydroxy-2,3-dimethoxyxanthone (12) which also has a C-7 hydroxyl group. From the above data, onjixanthone I was determined to be 7-hydroxy-1,2,3-trimethoxyxanthone (1).

Onjixanthone II(2) was obtained as yellow needles, 231-233°, $C_{15}H_{12}O_7$. The UV spectrum (λ_{max} 242.0, 256.6, 322.2 and 366.2 nm) was similar to that of 6hydroxy-1,2,3,7-tetramethoxyxanthone (9) (λ_{max} 242.8, 274.6, 315.8 and 353.8 sh nm). The ¹H NMR spectrum of 2 (Table 1) showed the presence of three singlet aromatic protons, two methoxyl groups and a chelated hydroxyl group (δ 14.09), which was assigned to the C-1 hydroxyl group. Methylation of 2 afforded a methyl ether, $C_{18}H_{18}O_7$, which was identified as 1,2,3,6,7-pentamethoxyxanthone (8) by direct comparison with an authentic sample. This indicated that 2 is a xanthone possessing three hydroxyl and two methoxyl groups at the C-1, C-2, C-3, C-6 and C-7 positions, respectively, including the C-1 hydroxyl group.

It is reported by Chaudhuri *et al.* (4) that the δ value for a methoxyl carbon surrounded by two ortho substituents (OMe, O-aryl, CO-aryl) in the ¹³C NMR spectrum of polymethoxyxanthone is shifted downfield to δ 60–62. Therefore, the appearance of a downfield methoxyl signal at δ 60.3 in the ¹³C NMR spectrum of 2 (Table 2) indicated the presence of a C-2 methoxyl group. Finally, the substituents attaching to C-3, C-6 and C-7 of 2 were determined by the NOESY spectrum of the benzyl ether (2a) of 2. This spectrum in CDCl₃ showed three cross peaks between the downfield aromatic proton (H-8) at δ 7.69 and the methoxyl signal at δ 3.99, the benzylmethylene signal at δ 5.22 and the aromatic proton signal at δ 6.74, and the benzylmethylene signal at δ 5.26 and the aromatic proton signal at δ 6.82. This indicated that 2 possesses hydroxyl groups at the C-3 and C-6 positions and a methoxyl group at the C-7 position. From the above results, onjixanthone II was determined to be 1,3,6trihydroxy-2,7-dimethoxyxanthone (2).

EXPERIMENTAL

General. Mps: uncorr. IR: KBr discs. ¹H and ¹³C NMR: TMS as an int. standard, chemical shifts expressed in ppm and coupling constants (J) in Hz. TLC: (analytical and prep.) on precoated Kieselgel 60 F_{254} plate.

2D-NOESY. 2D-NOE data were obtained from the NOESY (magnitude mode) using the standard DISNMR software package (Bruker): data were collected in 2K t_2 data with 4 scans and 512 t_1 increments. A mixing time of 1 sec was randomly modulated by $\pm 2\%$ in order to eliminate coherent magnetization transfer. Data were filtered through a shifted sinebell window filter (SSB2=0) and doubly transformed in a 2K × 1K data matrix with a digital resolution of 2.68 Hz per point in the w_2 and w_1 domain.

Plant material. Dried and cut roots of P. tenuifolia Willd. were purchased from Yamamoto-yakuhin Co., Ltd (Tokyo).

Extraction and isolation. Roots (4.8 kg) were extracted with MeOH (201 × 3, 3 hr each) under reflux. The MeOH extract was concd under red. pres. (1084.8 g), dissolved in H₂O (45 l) and shaken successively with Et₂O, *n*-BuOH (31 × 3, each). The Et₂O sol part (168.1 g, yield 3.5%) was chromatographed over 1 kg of silica gel with *n*-hexane-Me₂CO to give 8 frs. Fr. 5 (7.436 g) was

С	1*	2	3	3a*	4	4a*	5	5a*	6	6a
1	153.8	153.8*	163.8	151.5	162.4	151.6	163.7	151.5	163.2	151.5ª
2	140.0	131.7	97.4	107.6	96.8	107.6	97.7	97.7	107.9	96.9
3	159.1	155.2	166.3	164.3	166.3	164.6	166.4	164.4	166.0	163.7
4	96.9	94.8	92.7	98.8	92.4	99.0	92.9	98.9	92.5	98.9
4a	155.0	159.4	158.4	159.0	157.3	158.9	151.8	158.7	157.2	158.8
4b	149.2	156.3	153.4	149.8	149.0	152.9	147.1	144.3	152.4	151.3ª
5	119.0	103.8	103.9	112.2	118.9	118.6	136.2	141.5	99.5	99.2
6	124.1	153.4*	156.5	145.3	124.7	128.4	†	138.5	155.6	155.0
7	155.5	146.8	147.0	148.6	154.0	146.8	147.3	149.0	146.7	146.8
8	110.1	105.3	105.4	107.2	107.9	118.6	100.4	101.2	104.6	105.4
8a	123.8	112.2	112.7	120.4	120.3	122.9	112.2	120.4	113.3	115.3
9	174.9	180.4	180.2	174.1	180.0	174.2	180.2	174.0	179.8	174.1
9a	110.8	103.1	103.8	108.8	102.7	108.9	103.7	108.8	103.5	108.9
OMc-1	62.2	_		_					—	—
OMe-2	61.4	60.3	_	_		_	_	—	_	_
OMe-3	56.4		55.9 ^b	56.0ª	56.0	56.0	55.9ª	56.1	55.8 *	55.9°
OMe-7	_	55.9	56.0°	56.5*		_	56.0*	56.5	56. 5 *	56.4 ⁶
Ac	—		_	169.6, 21.7 168.2, 20.7	_	169.6, 21.2 169.3, 21.0	—	169.6, 21.2 168.1, 20.5	—	169.7, 21.3

Table 2. ¹³C NMR spectral data of compounds 1-6, 3a, 4a, 5a, and 6a (125 MHz)

Spectra of 1, 2, 3, and 5 measured in pyridine-d₅, 4 in DMSO-d₆, and 3a, 4a, 5a, 6, 6a, 7, and 8 in chloroform-d.

*Assignments confirmed by ¹H-¹³C COSY and COLOC.

†Signal overlapped signals of pyridine- d_5 .

^{a,b}Assignments interchangeable.

rechromatographed on silica gel (5 cm i.d. \times 20 cm) with CHCl₃-MeOH. The CHCl₃-MeOH (99:1) eluate (250 ml) was concd to give a residue (838 mg), which was purified by prep. TLC (CHCl₃-MeOH (30:1), $R_f 0.45$) to give 10 (10 mg). The CHCl₃-MeOH (49:1) eluate (200 ml) was concd to give a residue (1.81 g), which was purified by prep. TLC (CHCl₃-MeOH (30:1)) to give 6 (R_f 0.91, 15 mg), 7 (R_f 0.80, 33 mg). Fr. 6 (7.879 g) was chromatographed on silica gel (4 cm i.d. × 20 cm) with CHCl₃-MeOH. The CHCl₃ eluate (627 mg) was purified by prep. TLC (CHCl₃-MeOH (30:1)) to give 6 (R , 0.91, 19 mg, total 34 mg) and a mixt. of 7 and 11 (R_f 0.80, 156 mg). The mixt of 7 and 11 was purified by prep. TLC (n-hexane-EtOAc (3:2)) to give 7 (R_f 0.43, 98 mg, total 152 mg) and 11 (R_f 0.30, 28 mg). The CHCl₃-MeOH (50:1) eluate (2977 mg) was purified by prep. TLC (*n*-hexane-Me₂CO (3:2), R_f 0.65) to give 4 (12 mg). Fr. 7 (4.415 g) was chromatographed on silica gel (4 cm i.d. \times 23 cm) with CHCl₃-MeOH. The CHCl₃ eluate (319 mg) was purified by prep. TLC (CHCl₃-MeOH (30:1), R, 0.78) to give 8 (46 mg). The CHCl₃-MeOH (99:1) eluate (624 mg) was purified by prep. TLC $[C_6H_6 - Et_2O(1:1)]$ to give 3 (R_f 0.63, 15 mg) and 5 (R_f 0.55, 42 mg). The CHCl₃-MeOH (24:1) eluate (1.752 g) was rechromatographed on silica gel $(3 \text{ cm } 1.d. \times 22 \text{ cm})$ with *n*-hexane-Me₂CO. The *n*-hexane-Me₂CO (7:3) eluate (582 mg) was purified by prep. TLC [(i) n-hexane – Me₂CO (3:2), $R_f 0.8$; (ii) nhexane-EtOAc (1:1), R_f 0.71] to give 12 (31 mg). The nhexane-Me₂CO (3:2) eluate (472 mg) was purified by prep. TLC [n-hexane - EtOAc(1:1)] to give 1 (R_f 0.46, 8 mg) and 2 (R_f 0.52, 96 mg). The n-hexane -Me₂CO (1:1) eluate (335 mg) was purified by prep. TLC (CHCl₃-MeOH (30:1), R_f 0.50) to give 9 (85 mg).

Onjixanthone 1(1). Yellow needles from CH₂Cl₂-EtOH, mp 237-240°. IR v_{max}^{KBr} cm⁻¹: 3304 (OH), 1640 (C=O), 1616, 1590 (aromatic ring). UV λ_{max}^{Ei0H} nm (log ε): 241.4 (4.28), 253.4 (4.24), 279.6 (3.90), 311.4 (3.89), 355.8 (3.62). EIMS m/z (rel. int.): 302 [M] + (32), 288 (18), 287 (100), 259 (43), 244 (25), 229 (22), 137 (23), 93 (25). High resolution MS m/z: 302.0788 (calc. for C₁₆H₁₄O₆: 302.0790).

Methylation of compound 1. A mixt. of 1 (3 mg), Me_2SO_4 (0.05 ml) and K_2CO_3 (30 mg) in dry Me_2CO (1.5 ml) was stirred at 45° for 3 hr. After removal of inorganic salts by filtration, the filtrate was coned and purified by prep. TLC (*n*-hexane-EtOAc (3:2)) to give an amorphous powder, which was identified as 1,2,3,7-tetramethoxyxanthone (7) by direct comparison (EIMS, ¹H NMR and TLC) with an authentic sample.

Onjixanthone (2). Yellow needles from CH_2Cl_2 -MeOH, mp 231-233° (Found: C, 59.00; H, 4.05. $C_{15}H_{12}O_7$ requires: C, 59.21; H, 3.98%). IR ν_{max}^{KBF} cm⁻¹: 3440, 3275 (OH), 1648 (C=O), 1612, 1572 (aromatic ring). UV λ_{max}^{Ei0H} nm (log ε): 242.0 (4.45), 256.6 (4.40), 322.2 (4.32), 366.2 (4.15). EIMS m/z (rel. int.): 304 (M)⁺ (71), 290 (14), 289 (75), 286 (24), 261 (100), 246 (34). High resolution MS m/z: 304.0582 (calc. for $C_{15}H_{12}O_7$: 304.0583).

Methylation of compound 2. A mixt of 2 (10 mg), Me_2SO_4 (0.1 ml) and K_2CO_3 (50 ml) in dry Me_2CO (2 ml) was stirred at 50° for 3 hr. The reaction mixt. was dil. with Et_2O , washed with H_2O , and concd to give an amorphous powder (from CH_2Cl_2 -EtOH) (7 mg), mp 181–183°. This was identified as 1,2,3,6,7-pentamethoxyxanthone (8) by direct comparison (IR, EIMS and ¹H NMR) with an authentic sample.

Benzylation of compound 2. A mixt. of 2 (6 mg), PhCH₂Cl (30 mg) and K₂CO₃ (30 mg) in DMF and H₂O (100:1) (1.5 ml) was stirred at 90° for 5 hr. The reaction mixt. was dil. with Et₂O, washed with H₂O and concd. The residue was purified by prep. TLC (*n*-hexane-Me₂CO (7:3)) to give an amorphous powder (2a) (6 mg). EIMS m/z (rel. int.): 574 (M)⁺ (1.9), 484 (11), 469 (2.6), 393 (2.6), 105 (2.5), 91 (100). High resolution MS m/z: 574.1992 (calc. for C₃₆H₃₀O₇: 574.1991). ¹H NMR (CDCl₃): $\delta 3.88$ (3H, s, OMe-2), 3.99 (3H, s, OMe-7), 5.18 (2H, s, OCH₂C₆H₅-1), 5.22 and 5.26 (each 2H, s, OCH₂C₆H₅-3 and -6), 6.74 and 6.82 (each 1H, s, H-4 and H-5), 7.69 (1H, s, H-8), 7.32–7.72 (15 H, m, $3 \times OCH_2C_6H_5$).

1,6-Dihydroxy-3,7-dimethoxyxanthone (3). Light yellow needles from EtOH, mp 262-264°. IR v_{max}^{KBr} cm⁻¹: 3268 (OH), 1658 (C=O), 1600 (aromatic ring). UV λ_{max}^{EtOH} nm (log ε): 234.4 (4.39), 254.6 (4.38), 311.6 (4.00), 364.0 (4.05). EIMS m/z (rel. int.): 288 (M)⁺ (100), 273 (24), 259 (28), 258 (19), 245 (44), 217 (18). High resolution MS m/z: 288.0638 (calc. for C₁₅H₁₂O₆: 288.0634).

Acetylation of compound 3. Compound 3 (17 mg) was treated with Ac₂O (0.250 ml) and pyridine (0.4 ml) at room temp. overnight, dil. with H₂O and extracted with Et₂O. The dried Et₂O extract was purified by prep. TLC (C₆H₆-Et₂O (1:2)) to give 3a (12 mg) as needles (from CH₂Cl₂-MeOH), mp 223.5-225.5⁵. IR v_{MBT}^{KBT} cm⁻¹: 1768 (ester), 1656 (C=O), 1624, 1602 (aromatic ring). High resolution MS m/z: 372.0865 (calc. for C₁₉H₁₆O₈: 372.0845).

1,7-Dihydroxy-3-methoxyxanthone (4). Yellow needles from Me₂CO EtOH, mp 273–275°. IR v_{max}^{Bar} cm⁻¹: 3368 (OH), 1658 (C=O), 1610, 1584 (aromatic ring). UV λ_{max}^{EtOH} nm (log ε): 237.4 (4.27), 259.6 (4.40), 306.0 (3.97), 373.0 (3.63). EIMS *m*/*z* (rel. int.): 258 (M)⁺ (100), 229 (78), 228 (22), 201 (12), 115 (9.9), 69 (12). High resolution MS *m*/*z*: 258.0526 (calc. for C₁₄H₁₀O₅: 258.0528).

Acetylation of 4. Compound 4 (8 mg) was treated with Ac₂O (0.2 ml) and pyridine (0.4 ml) at room temp. overnight. The reaction mixt, was treated as described for acetylation of 3 to give 4a (8 mg) as needles (from Et₂O-MeOH), mp 199-200°. IR v_{max}^{KBr} cm⁻¹: 1764 (ester), 1650 (C=O), 1626, 1598 (aromatic ring). High resolution MS m/z: 342.0740 (calc. for C₁₈H₁₄O₇: 342.0739).

1,6-Dihydroxy-3,5,7-trimethoxyxanthone (5). Yellow needles from CH₂Cl₂-MeOH, mp 235-237° (Found: C, 60.23; H, 4.37. Calc. for C₁₆H₁₄O₇: C, 60.38; H, 4.43%). 1R ν_{max}^{KB} cm⁻¹: 3256 (OH), 1662 (C=O), 1596 (aromatic ring). UV $\lambda_{max}^{\text{EiOH}}$ nm (log ε): 207.6 (4.38), 239 (sh 4.45), 255.2 (4.53), 279 (sh 3.97). EIMS *m/z* (rel. int.): 318 (M)⁺ (100), 303 (14), 289 (13), 275 (15), 257 (20), 229 (12).

Acetylation of compound 5. Compound 5 (20 mg) was treated with Ac₂O (0.2 ml) and pyridine (0.4 ml) at room temp. overnight. The reaction mixt. was treated as described for acetylation of 3 to give 5a (17 mg) as needles (from Et₂O-MeOH), mp 174-176² (Found: C, 60.08; H, 4.44. Calc. for C₂₀H₁₈O₉: C, 59.70; H, 4.51%). IR ν_{max}^{KBP} cm⁻¹: 1770 (ester), 1632 (C=O), 1602 (aromatic ring). EIMS m/z (rel. int.): 402 [M]⁺ (8.7), 360 (18), 319 (19), 318 (100), 303 (8.2), 289 (11), 257 (8.0).

1-Hydroxy-3,6,7-trimethoxyxanthone (6). Yellow needles from EtOH, mp 220–221°. IR $v_{\text{MB}}^{\text{KB}}$ nm⁻¹: 3420 (OH), 1666 (C=O), 1608, 1582 (aromatic ring). UV $\lambda_{\text{mat}}^{\text{KiOH}}$ nm (log c): 204.2 (4.32), 239.4 (4.22), 256.2 (4.39), 308.2 (4.04), 359.6 (3.85). EIMS *m/z* (rel. int.): 302 (M)⁺ (100), 287 (15), 273 (12), 259 (24), 231 (11), 216 (11). High resolution MS *m/z*: 302.0804 (calc. for C₁₆H₁₄O₆: 302.0790).

Acetylation of 6. Compound 6 (19 mg) was treated with Ac₂O (0.25 ml) and pyridine (0.4 ml) at room temp. overnight. The reaction mixt was treated as described for acetylation of 3 to give 6a (17 mg) as needles (from CH₂Cl₂-EtOH), mp 214-216° (Found: C, 62.91; H, 4.73. Calc. for C₁₈H₁₆O₇: C, 62.79; H, 4.68). IR $\nu_{\rm Max}^{\rm KBr}$ cm⁻¹. 1756, 1628 (C=O), 1614, 1598 (aromatic ring). EIMS *m/z* (rel. int.): 344 (M)⁺ (17), 302 (100), 287 (13), 273 (14), 259 (16).

Acknowledgements—The authors express their gratitude to Mr K. Kano and Mrs N. Kobayashi (Research Institute for Biology & Chemistry, Tsumura & Co.) for measurements of elemental analysis and MS.

REFERENCES

- 1. Ito, H., Taniguchi, H., Kita, T., Matsuki, Y., Tachikawa, E., and Fujita, T. (1977) *Phytochemistry* 16, 1614.
- Liu. T., Ueda, S., Fujita, T., and Takeda, Y. Abstracts of Papers 2, The 110th Annual Meeting of Pharmaceutical Society of Japan, Sapporo, August 1990, p. 228.
- Govindachari, T. R., Pai, B. R., Subramaniam, P. S., Rao, U. R., and Muthukumaraswamy, N. (1967) *Tetrahedron* 23, 243.
- 4. Chaudhuri, R. K., Zymalkowski, F. and Frahm, A. W. (1978) Tetrahedron 34, 1837.
- 5. Sun, H.-F., Hu, B.-L., Fan, S.-F., and Ding, J.-Y. (1983) Acta Botan. Sinica 25, 460.
- 6. Dreyer, D. L. and Bourell, J. H. (1981) Phytochemistry 20, 493.

- 7. Bhardwaji, D. K., Jain, R. K., Jain, B. C., and Mehta, C. K. (1978) Phytochemistry 17, 1440.
- Atkinson, J. E., Gupta, P. and Lewis, J. R. (1969) *Tetrahedron* 24, 1507.
- 9. Ghosal, S., Biswas, K., and Chaudhuri, R. K. (1977) J. Chem. Soc., Perkin Trans I, 1597.
- Ghosal, S. and Chaudhuri, R. K. (1973) *Phytochemistry* 12, 2035.
- 11. Frahm, A. W. and Chaudhuri, R. K. (1979) Tetrahedron 35, 2035.
- Westerman, P. W., Gunasekera, S. P., Uvais, M., Sultanbawa, S., and Kazlauskas, R. (1977) Org. Magn. Reson. 9, 631.