SPECTROSCOPIC AND MAGNETIC PROPERTIES OF SCHIFF BASE COMPLEXES OF OXOVANADIUM(IV) DERIVED FROM 3-METHOXYSALICYLALDEHYDE AND ALIPHATIC DIAMINES

K. S. PATEL* and G. A. KOLAWOLE

Department of Chemistry, University of Ibadan, Ibadan, Nigeria

and

A. EARNSHAW

School of Chemistry, University of Leeds, Leeds LS2 9JT, England

(Received 23 February 1981; received for publication 20 August 1981)

Abstract—Oxovanadium(IV) complexes of 3-methoxysalicylaldehyde and the Schiff base complexes VO[OC₆H₃(OCH₃)CH=N-CR₁R₂-(CH₂)_{n-1}-N=CH(OCH₃)C₆H₃O] were $n = 2(R_1 = R_2 = H \text{ or } CH_3)$ and n = 3 to 10 ($R_1 = R_2 = H$) have been prepared and characterised by elemental analysis, IR and electronic spectra and magnetic susceptibility measurements. Evidence is adduced that the conversion of the bis-aldehyde complex to the Schiff base complexes is accompanied by an inversion of the e_{π}^* and b_1^* energy levels. The ν (V = 0) frequency of 979-988 cm⁻¹ observed for most of the complexes, except when $R_1 = R_2 = H$ and n = 3 where ν (V = 0) is 864 cm⁻¹, are normal for five-coordinate oxovanadium(IV) complexes. The magnetic moments at room temperature of the chelates fall in the range 1.72-1.83 B.M. and vary very slightly over the temperature range 320-80 K.

INTRODUCTION

Recently, we reported [1] the magnetic and spectral properties of V(IV)O Schiff base salicylaldimine complexes and speculated the possibility of the inversion of the ordering of the e_{π}^* and b_{π}^* energy levels. These studies now have been extended to bis(3-methoxy-salicylaldehyde)oxovanadium(IV) and its polymethylenediamine derivatives I in order to examine the effect of 3-methoxy

The bis-aldehyde complex, VO(Omesal)₂ H₂O, is aiven number O

*Author to whom correspondence should be addressed.

substitution in the bonding and stereochemistry. The complexes investigated are being reported for the first time.

EXPERIMENTAL

Preparation of bis(3-methoxysalicylaldehyde)oxovanadium(IV). An ethanolic solution of 0.2 mole of 3-methoxysalicylaldehyde was added dropwise to 0.1 mol of $VOSO_4.2H_2O$ dissolved in 300 cm³ of 60% ethanol while stirring. The pH of the resultant solution was adjusted to 6 by addition of sodium acetate whereby a solid was precipitated. The product was filtered and washed consecutively with 50% ethanol and absolute ethanol.

Preparation of the Schiff base complexes. N,N'-bis(3methoxysalicylidene)polymethylenediiminato - oxovanadium(IV).

Compounds 1-6 were isolated by the following procedure. A solution of 5.5-6.0 mmoles of the amine in absolute ethanol was added to a suspension of 5.0 mmoles of VO(Omesal)₂.H₂O in about 100 cm³ ethanol. The mixture was refluxed (slow heating) while stirring. For complexes 1-4 the reaction was complete in about 1 hr while VO(Omesal₂-tm) and VO(Omesal₂-ptn) required 8 and 16hr respectively. The products were filtered and soluble chelates (1-3) were recrystallised from chloroform while the insoluble complexes (4-6) were washed with ethanol and traces of soluble impurities removed by Soxhlet extraction.

N,N'-bis(3-methoxysalicylidene)ethylenediiminatooxovanadium(IV), VO(Omesal₂-en), was found to be airsensitive and rapidly turned buff in chloroform. The dried complex slowly turned buff when exposed to air for about two hours. The green threadlike crystals obtained from chloroform, when dried in vacuo at room temperature analysed as VO(Omesal₂-en). $\frac{1}{2}$ CHCl₃, presumably similar to Co(sal₂-en). $\frac{1}{2}$ CHCl₃[2]. The chloroform was, however, lost when the crystals were dried in vacuo at 60°C for 8 hr. The brown crystals obtained from nitromethane analysed as VO(Omesal₂-en). $\frac{1}{2}$ H₂O.O₂.

Using the above method for compounds (7-11) the reaction mixtures refluxed for up to 72 hr yielded less than 20% formation of the Schiff base complex. Consequently, compounds (7-11) were prepared by the method described previously[1].

All the complexes were dried in vacuo over $CaCl_2/P_2O_5$ and, where necessary, in a drying pistol at 60–100°C for 8 hr. These complexes are found to be relatively more soluble in organic solvents than their salicylaldimine analogues.

Elemental analyses for C, H, N and Cl were carried out by the Microanalytical Laboratory at the University of Leeds. Vanadium was estimated by converting the complexes to V_2O_5 . Physical measurements. The methods used for spectroscopic and magnetic measurements have been described elsewhere [1]. Molar masses of complexes soluble in chloroform were determined (using 5–15 mg of sample/1 cm³ of CHCl₃) on the Hitachi Perkin-Elmer Molecular Weight Apparatus 115. VO(Omesal₂-Mepn) is monomeric whereas VO(Omesal₂-en) and VO(Omesal₂-pn) are probably associated with half a molecule of chloroform in the crystals.

The analytical data along with some physical properties of the complexes are presented in Table 1.

RESULTS AND DISCUSSION

The relevant IR band positions are tabulated in Table 2. The $\nu(C = N)$ in the complexes falls within the same range as in salicylaldimine analogues [1]. A band observed between 1550 and 1555 cm⁻¹ which is at a slightly higher frequency than the corresponding band in the

-	Compound	Colour	M.P. (°C)	Yield (%)	% C Found (Calc.)	% H Found (Calc.)	% N Found (Calc.)	% V Found (Calc.)
	VO(Omesal) ₂ .H ₂ O	green	145°	74	49.55	4.30	-	13.00
					(49.63)	(4.10)		(13.16)
	VO(Omesalen)	green	268.1	58	54.90	4.55	7.05	12.87
	2			•	(54.97)	(4.61)	(7.12)	(12.95)
vo(a Omesalen).%CHCl_	green	-	-	47.30	4.35	5 •95	-
	2)				(49.05)	(4,12)	(6.18)	-
vo(b Omesalen).%H_O.O	brown	-	-	49.85	4.95	6.50	-
	~ ~ ~ ~				(49.82)	(4,41)	(6.45)	-
	VO(Omesalpn)	green	243.0	62	56.25	4.95	6.70	12.32
	2.	-			(56.04)	(4.95)	(6.88)	(12.50)
	VO(Omesal ₂ -Mepn)	green	225.5	60	5 7. 55	5,10	6.55	11.90
	-				(57.02)	(5.26)	(6.65)	(12.09)
	VO(Omesaltn)	yellow	299 [°]	94	55 .8 0	4.85	6.75	11.97
	٤.				(56.04)	(4.95)	(6.88)	(12,50)
	VO(Omesal ₂ -tm)	grey-green	283 [°]	75	56.80	5.25	6.70	12.21
	-				(57.02)	(5,26)	(6.65)	(12.09)
١	/0(Omesal ₂ -ptn)	grey-green	260°	72	57.95	5.43	6.75	11,58
					(57.94)	(5.56)	(6.43)	(11.70)
T	/O(Omesal ₂ -hxm)	grey-green	169 [°]	77	57.40	5.95	6.40	11.75
	-				(58.81)	(5.83)	(6.23)	(11.33)
1	VO(Omesal _o ~hpm)	grey-green	165°	76	60.00	6.30	6.10	10.25
	-				(59.62)	(6.09)	(6.04)	(10.99)
١	VO(Omesal ₂ -ocm)	grey-green	133°	74	61.45	6.45	5.90	10.47
	-				(60.36)	(6.33)	(5.87)	(10.67)
1	VO(Omesal ₂ -nnm)	grey-green	128 ⁰	71	60.70	6.75	5.65	10.10
	_				(61.08)	(6.56)	(5.70)	(10.36)
,	VO(Omesal ₂ -dcm)	grey-green	12 7°	7 7	62.30	7.00	5.55	9•90
					(61,77)	(6.78)	(5.54)	(10.08)

Table 1. Analytical data of the oxovanadium(IV) complexes

* %Cl 11.4 (11.7); ^b Brown crystals obtained from nitromethane; ^CDecompositon temperatures.

Table 2. Some relevant IR frequencies for the oxovanadium(IV) complexes-VO(Omesal2-A)

A	en	pn	Mepn	tn	tm	ptn	hxm	hpm	002	bn n	dcm	Tentative assignments
	1620 vs	1615 vs	1610 vs	162078	162078	1620 va	1620 v s	162078	161878	1618 vs	1618 vs	V(C=N)
1605 v a												v(C=0)
15478	15 50a	15508	1550 s	1548 s	1555 a	1555 s	155 3 =	1555	1552m	1552	1552	v(C=C)
	1468 m	1470 m	1469 m	1466	1470 n	1470=	1469 m	1470m	1468 m	1468 m	1468m 2	-CH
	1439 vs	1441s	144 0 8	1442 <u>m</u>	1452 a	1451∎	1450	1451=	1450 m	1450 m	1450v J	deformation
	1398 m	1400m	1400 m	1400m	1401m	1400m	14 00 m	1400 m	1399m	1399m	1399 w	v(C-M)
1326 a	12 96 v a	1298 vs	1300 vs	1314 v a	1308 vs	1308 🕶	1305**	130 7 =	130 6 #	130 5 s	1305 🕶	v(C-O)phenolis
124 8 #	1250a	1245 m	1249∎	12428	12508	12508	12 48 s	1248	1248s	124 8s	124 8s	\$(C_H)
10768	10 83 v s	1081 m	1081 <u>m</u>	1077s	1084#	1081s	1082 a	1082	108 0m	1081m	1081 m	v(C-O) methoxy
965 va	988s	982 v s	985 v s		987 va	979 v s	981a	981a	980=	980#	980 va	v(V=0)
				864 vs								¥-0-¥
570a	570 s	570 =	573m	565a	584m	586m	587 v	590¥	589w	590w	590m	v(V-0)
	4608	4458	486s	472m	462 m	461 m	466 m		460m	464w	460 7	v(¥-₩)
	455 m		455m	443 m				440 m			J	
399 =	380a	378 =	377 =	396 s	364∎	370¥	370w	360w	360w	365w	362m	$v(\mathbf{v}_{-0})$

Vs = very strong, s = strong, m = medium, w = weak

salicylaldimine series is assigned to $\nu(C = C)$ aromatic. This increase is expected when an electron-releasing group is attached to an aromatic ring. The splitting of -CH₂- deformation modes between 1440 and 1470 cm⁻¹ is likely due to interchain forces [3] in the polymethylene bridges. The ν (V = O) frequency of VO(Omesal)₂. H₂O is considerably lower compared to an unperturbed V=O[4] similar to the value (965 cm^{-1}) reported for VO(sal)₂.H₂O[5] and VO(acac)₂.py[6]. Moreover, the presence of a strong band at 3340 cm⁻¹ suggests that the complex is likely to be six-coordinate. The trend in the ν (V – O) frequencies in the Schiff base complexes follows the order observed for the salicylaldimine series[1]; however, the $\nu(V-N)$ and $\nu(V-O)$ frequencies are higher indicating an increase in the in-plane σ -interaction and hence in covalency [7].

The diffuse reflectance spectra of VO(Omesal)₂.H₂O and the Schiff base complexes are given in Fig. 1 and the band positions are tabulated in Table 3. The most intense band at 12.27 kK and a medium intensity band at 17.00 kK observed for VO(Omesal)₂.H₂O have been assigned to $b_2(d_{xy}) \rightarrow e_{\pi}^*(d_{xz}, d_{yz})$ and $b_2(d_{xy}) \rightarrow b_1^*(d_{x^2-y^2})$ transitions [8]. The reflectance spectra of the Schiff base complexes are, however, different from that of VO(Omesal)₂.H₂O where the band at 15-17 kK is the most intense and the band at 11-13 kK reduces to either a shoulder (complexes 1-3) or a broad low-intensity band (complexes 4-11). Measurements in chloroform solutions retain this trend as borne out by maximum molar absorptivity of the band at 15-17 kK. It therefore seems that the e_{π}^* and the b_1^* levels have been inverted [4,9] in the Schiff base complexes. In the reflectance spectra, the band at 15-17 kK splits into two closely spaced maxima in complexes 1 and 2. This separation is interpreted as arising from the removal of the degeneracy of the e^* levels as a result of greater deviation from regular geometry [10]. The absence of this band in the spectra of VO(Omesal₂-tn) and VO(sal₂-tn)[1,11] suggests that VO(Omesal₂-tn) is likely to be polymeric with V-O-V linkages having a distorted octahedral geometry [12]. The third band appears either as a weak shoulder at 19-20 kK

or is enveloped under an intense charge-transfer band at 25-30 kK in VO(Omesal)₂.H₂O and complexes (1-4). However, this band appears well-defined at 18-19.5 kK in complexes (5-11).

The solution spectra, (Fig. 2) and the minor shifts in band maxima (Table 3) indicate some solvent dependence on going from a non-coordinating to a coordinating solvent. Like the salicylaldimine series, these Schiff base complexes from six-coordinate species in pydridine solution and consequently the orietation of the alkyl bridge is equatorial [13].

Considering the band maxima and molar absorptivities

Compound	State		Band maxima in MX (g/m ² mol ⁻¹)					
		b ₂ →b ₁ *	ν2 ⁻⁰ π	b2-4,	C.T			
V0(0mesal)2+H20	R	17.04	12.27	21.83	25.64			
	C	ъ	ъ	~20.20 [®]				
	P	ь	Ъ	•	1			
Vo(Osesal ₂ -en)	R	13.33 ^a	15.87 17 .3 9	20 . 41 [®]	24.39, 28.17			
	C	10.98(10)	15.53(62)	-	(
	Р	c	16.63(20)	-				
VO(Omesal ₂ -pa)	R	13.25 ^ª	15.75	21,50 ⁸	23.26,27.40			
			15 18(145)					
	P	13.34(9)	16.42(22)					
					25 <i>Ch</i> 20 67			
VO(OmesalMepn)	RC	11.98	16.08(29)		27.07, 27.03			
	P	13,18(8)	16.57(17)					
VO(Omesal_tn)	R	11.36	-	19,23 ^ª	26.32, 28.57			
۲ ۲	c		14.15(435)	22.6 (267	0			
	P	13.18(9)	-	18.63(12)			
Vo(omesal ₂ -tm) ^o	R	12.42	16.53	18.18	25.64, 27.62			
Vo(omesal ₂ -ptn) ^c	R	11.83	16.81	18.28	25.97, 27.40			
VO(Omesal ₂ -hxm)	R	11.93	16.70	18.50	27.40			
VO(Omesal ₂ -hpm)	R	11.90	16.53	18,52	27.03			
	C	c	~16.80					
	P	13.29(8)		19 37 (8)				
VO(Omesalocm)	R	11.76	16.45	18,35	27,25			
	0	c	~16.72		-/ •->			
	2	ь	Ъ	ъ				
Vo(Omesalnnm)	R	12.20	16.81	18.52	25.97, 27.25			
	°	c	16.94(115)					
	P	14.0(6)		19,39(7)				
VO(Omesaldcm)	R	12.17	16.47	18,62	27.03			
	°		16.61(121)					
	P	b	b	Ъ				

Table 3. Electronic spectral data of the oxovanadium(IV) complexes

R = reflectance, C = chloroform solution,

- P = pyridine solution, C.T = charge transfer
- a shoulder, b = a flat broad unresolved spectrum,
- c = a broad tail, likely to contain a low-intensity band.

Compound T(K)	0	1	2	3	4	5	6
320	1.77	1.72	1.76	1.72	1.83	1.73	1.74
300	1.77	1.72	1.75	1.72	1.62	1.73	1.74
2 80	1.76	1,72	1.75	1.71	1.82	1.72	1.73
260	1.76	1.72	1.75	1.71	1.82	1.72	1.73
240	1.75	1.72	1.75	1.71	1.82	1 .72	1.73
220	1.75	1.72	1.75	1.71	1.81	1.72	1.73
200	1.75	1.71	1.74	1.70	1.81	1.71	1.73
180	1.74	1.71	1.74	1.70	1.80	1.71	1.72
160	1.73	1.71	1.74	1,69	1.80	1.70	1.71
140	1.73	1.71	1.73	1,68	1.79	1.69	1.71
120	1.71	1.70	1.72	1.67	1.79	1,69	1 ,7 0
100	1.70	1.69	1.71	1.67	1.77	1.67	1.69
85	1.68	1.68	1.70	1.64	1.76	1.65	1.68
θ	12	5	7	12	8	11	9
-x _L x 10 ⁶	214	220	231	243	231	243	255
(cm ³ mol ⁻¹)							

Table 4. Variation of magnetic moments (μ_{eff} * B.M.) with temperature

Calculated from
$$\mu_{eff.} = 2.828 (\chi_A.T)^{\frac{1}{2}}$$
 and the Curie-Weiss law $\chi_A^{-1} \propto (T+\theta)$.

Fig. 2. Electronic spectra of VO(Omesal₂-en), VO(Omesal₂-pn), VO(Omesal₂-tn) and VO(Omesal₂-nnm) in chloroform (C) and pyridine (P).

the spectral data (Table 3) can be reasonably interpreted with the aid of the energy level diagrams presented in Fig. 3. The energies of the three d-d transitions are slightly lower in this series than in the salicylaldimine series[1] suggesting that the introduction of the methoxy group results in a reduction in the in-plane and axial ligand fields, which is consistent with increase in σ - interaction between V and the donor atoms[7].

The magnetic moments at 300 K (1.72-1.82 B.M.) are normal for a d^1 -oxovanadium(IV) system and the complexes obey the Curie-Weiss Law (Table 4). However, the large θ values observed for VO(Omesal)₂.H₂O, VO(Omesal₂-Mepn) and VO(Omesal₂-tm) indicate some weak magnetic interaction.

Fig. 3. Changes in the ordering of the d orbitals in oxovanadium (IV) complexes (not to the scale).

Acknowledgements—One of us (GAK) wishes to thank the Ibadan Polytechnic for granting a study leave and the Nigerian Federal Government for financial assistance.

REFERENCES

- G. A. Kolawole and K. S. Patel, J. Chem. Soc. (Dalton), 1241 (1981).
 M. Calligaris, G. Nardin and L. Randaccio, Coord. Chem.
- Rev. 7, 385 (1972). 3. L. J. Bellamy, Advances in Infrared Group Frequencies.
- Methuen, London (1968). 4. J. Selbin, L. H. Holmes, Jr. and S. P. McGlynn, J. Inorg.
- Nucl. Chem. 25, 1359 (1963).
 J. J. R. Frausto da Silva, R. Wootton and R. D. Gillard, J.
- *Chem. Soc.* (A) 3369 (1970).
- 6. K. Nakamoto, Y. Morimoto and A. E. Martell, J. Am. Chem. Soc. 83, 4533 (1961).
- L. J. Boucher, E. C. Tynan and T. F. Yen, *Electron Spin Resonance of Metal Complexes* (Edited by T. F. Yen), p. 111. Plenum Press, New York (1969).
- 8. C. J. Ballhausen and H. B. Gray, Inorg. Chem. 1, 111 (1962).
- 9. P. A. Kilty and D. Nicholls, J. Chem. Soc. (A) 1175 (1966).
- 10. J. Selbin, Coord. Chem. Rev. 1, 293 (1966).
- 11. R. L. Farmer and F. L. Urbach, Inorg. Chem. 13, 587 (1974).
- M. Mathew, A. J. Carty and G. J. Palenik, J. Am. Chem. Soc. 92, 3197 (1970).
- 13. A. Pasini and M. Gullotti, J. Coord. Chem. 3, 319 (1974).