2-Methyl-3-(p-chlorophenyl)-6-diethylaminoethoxybenzofuran Hydrochloride (XVIII). This was prepared like compound XVI in 80% yield, mp 142-144°C (from acetone-ether). Found, %: C 63.39, H 6.33, Cl 17.94. C<sub>21</sub>H<sub>24</sub>ClNO<sub>2</sub>·HCl. Calculated, %: C 66.50, H 6.40, Cl 18.02.

## LITERATURE CITED

- 1. M. Negwer, Organisch-chemische Arzneimittel und ihre Synonyma, Berlin (1967).
- 2. A. N. Grinev, V. I. Shvedov, A. A. Stolyarchuk, et al., Khim. Farm. Zh., No. 6, 142 (1977).
- 3. E. Bisagni and R. Royer, Bull. Chem. Soc. Fr., 925 (1962).
- 4. A. N. Grinev, S. A. Zotova, A. A. Stolyarchuk, et al., Khim. Farm. Zh., No. 1, 51 (1979).
- 5. R. Royer and C. Hudry, Bull. Soc. Chim. Fr., 939 (1961).
- A. N. Grinev, S. A. Zotova, and T. F. Vlasova, Khim. Geterotsikl. Soedin., No. 6, 311 (1976).
- 7. G. N. Pershin, Farmakol. Toksikol., No. 3, 53 (1950).
- 8. V. V. Gatsura, Methods for the Initial Pharmacological Examination of Biologically Active Compounds [in Russian], Moscow (1974).
- 9. N. T. Pryanishnikova and N. A. Sharov, Trimecaine, Pharmacology and Clinical Usage [in Russian], Leningrad (1967).
- 10. R. A. Veits, Farmakol. Toksikol., No. 1, 52 (1951).

SYNTHESIS AND HYPOGLYCEMIC ACTIVITY OF N-ALKYL-N'-(2-AMINO-1,3,4-THIADIAZOL-5-YLSULFONYL)- AND N-ALKYL-N'-(5-SULFAMOYL-1,3,4-THIADIAZOL-2-YL)-OXAMIDES

V. P. Chernykh, Zh. P. Buluda, P. A. Bezuglyi,V. I. Makurina, V. A. Chubenko, and L. N. Voronina

N-Substituted N'-arylsulfonyloxamides display marked sugar-reducing activity and are relatively nontoxic [1-3].

We thought it relevant to structure—activity studies to examine the biological activity of N-alkyl-N'-(2-amino-1,3,4-thiadiazo1-5-ylsulfonyl)- and N-alkyl-N'-(5-sulfamoyl-1,3,4thiadiazo1-2-yl)oxamides, in which the sulfonyl group is attached to a heterocycle.

We synthesized these groups of compounds by the reactions



Khar'kov Pharmaceutical Institute. Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 14, No. 2, pp. 33-37, February, 1980. Original article submitted April 23, 1979.

| and N-Alkv1-N'-(5-sulfamov1-1.3.4-                                |                               |
|-------------------------------------------------------------------|-------------------------------|
| TABLE 1. N-Alkyl-N'-(2-amino-1,3,4-thiadiazol-5-ylsulfonyl)-(III) | thiadiazol-2-y1)-oxamides (V) |

|  | IR spectra, cm <sup>-1</sup>                       | v <sup>s</sup> O2                  | 1180<br>1175                           | 1170<br>1180                                                                                                                                             | 1175<br>1179<br>1175                                                                                                                                                                                                        | 1180<br>1170<br>1175                                                                                                                                                                                                                        | 1170<br>1180<br>1170<br>1175                                                                                                                                                                                                     | 1180<br>1170<br>1170<br>1175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|--|----------------------------------------------------|------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|  |                                                    | v <sup>as</sup><br>SO <sub>2</sub> | 1360<br>1360                           | 1365<br>1365                                                                                                                                             | 1360<br>1355<br>1355                                                                                                                                                                                                        | 1365<br>1360<br>1360                                                                                                                                                                                                                        | 1355<br>1365<br>1365<br>1385<br>1385                                                                                                                                                                                             | 1370<br>1365<br>1365<br>1365<br>1370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|  |                                                    | °CO                                | 1720<br>1705                           | 1675<br>1730                                                                                                                                             | 1710<br>1680<br>1678                                                                                                                                                                                                        | 1730<br>1720<br>1680                                                                                                                                                                                                                        | 1715<br>1710<br>1685<br>1680<br>1675                                                                                                                                                                                             | 1730<br>1690<br>1675<br>1715<br>1690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|  |                                                    | ΗΝΛ                                | 3360<br>3365                           | 3370<br>3320                                                                                                                                             | 3280<br>3350<br>3360                                                                                                                                                                                                        | 3320<br>3320<br>3290                                                                                                                                                                                                                        | 3355<br>3355<br>3340<br>3375<br>3375<br>3375                                                                                                                                                                                     | 3320<br>3360<br>3375<br>3375<br>3375<br>3370<br>3340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|  | J Z                                                |                                    | $0,32 \\ 0,18$                         | $0,36 \\ 0,28$                                                                                                                                           | $0,21 \\ 0,44 \\ 0,41 \\ 0,41$                                                                                                                                                                                              | 0,39<br>0,32<br>0,36                                                                                                                                                                                                                        | $\begin{array}{c} 0.43\\ 0.25\\ 0.33\\ 0.43\\ 0.57\end{array}$                                                                                                                                                                   | $0,22 \\ 0,39 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ 0,37 \\ $ |  |
|  | oK <sub>a</sub> in 60%<br>aqueous<br>lioxane       |                                    | 6,55<br>6,45                           | 6,68<br>5;99                                                                                                                                             | 5,56<br>6,63<br>6,62                                                                                                                                                                                                        | 5,48<br>6,72<br>6,73                                                                                                                                                                                                                        | 6,03<br>6,06<br>6,13<br>6,52<br>6,52                                                                                                                                                                                             | 5,86<br>5,73<br>6,573<br>6,573<br>6,37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|  | μ,<br>d                                            | s                                  | 25,52<br>21,71                         | $21,86\\21,86$                                                                                                                                           | 22,00<br>20,86<br>20,86                                                                                                                                                                                                     | 19,95<br>19,23<br>18,78                                                                                                                                                                                                                     | 25,52<br>24,47<br>21,71<br>21,86<br>21,86                                                                                                                                                                                        | 22,01<br>20,86<br>19,95<br>19,23<br>18,78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|  | Calc.                                              | z                                  | 27,90<br>23,71                         | 23,87<br>23,87                                                                                                                                           | $\begin{array}{c} 24,04\\ 22,78\\ 22,78\\ 22,78\end{array}$                                                                                                                                                                 | $\begin{array}{c} 21,79\\ 21,00\\ 21,00\\ 20,51 \end{array}$                                                                                                                                                                                | $\begin{array}{c} 27,90\\ 26,40\\ 23,71\\ 23,87\\ 23,87\\ 23,87\end{array}$                                                                                                                                                      | $\begin{array}{c} 24,04\\ 22,78\\ 21,79\\ 21,79\\ 21,00\\ 20,51\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|  | Formula                                            |                                    | $C_4H_5N_5O_4S_2$<br>$C_6H_9N_5O_5S_2$ | ${}^{\rm C}_{\rm 7}{}^{ m H_{11}}{}^{ m N_{5}}{}^{ m O_{4}}{}^{ m S_{2}}{}^{ m C}_{\rm 7}{}^{ m H_{11}}{}^{ m N_{5}}{}^{ m O_{4}}{}^{ m S_{2}}{}^{ m s}$ | C,H <sub>9</sub> N <sub>5</sub> O <sub>4</sub> S <sub>2</sub><br>C <sub>8</sub> H <sub>13</sub> N <sub>5</sub> O <sub>4</sub> S <sub>2</sub><br>C <sub>8</sub> H <sub>13</sub> N <sub>5</sub> O <sub>4</sub> S <sub>2</sub> | C <sub>9</sub> H <sub>15</sub> N <sub>5</sub> O <sub>4</sub> S <sub>2</sub><br>C <sub>10</sub> H <sub>15</sub> N <sub>5</sub> O <sub>4</sub> S <sub>2</sub><br>C <sub>11</sub> H <sub>11</sub> N <sub>5</sub> O <sub>4</sub> S <sub>2</sub> | C4H 5N 5O4R2<br>C5H 7N 5O4S2<br>C6H 9N 5O4S2<br>C7H11N 5O4S2<br>C7H11N 5O4S2<br>C7H11N 5O4S2                                                                                                                                     | C,H <sub>9</sub> N <sub>5</sub> O <sub>4</sub> S <sub>2</sub><br>C <sub>6</sub> H <sub>13</sub> N <sub>5</sub> O <sub>4</sub> S <sub>2</sub><br>C <sub>6</sub> H <sub>16</sub> N <sub>5</sub> O <sub>4</sub> S <sub>2</sub><br>C <sub>10</sub> H <sub>15</sub> N <sub>5</sub> O <sub>4</sub> S <sub>2</sub><br>C <sub>11</sub> H <sub>11</sub> N <sub>5</sub> O <sub>4</sub> S <sub>2</sub><br>C <sub>11</sub> H <sub>11</sub> N <sub>5</sub> O <sub>4</sub> S <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|  | 1, gr                                              | s                                  | 25,73<br>21,94                         | 21,91<br>21,90                                                                                                                                           | 22,30<br>20,99<br>21,01                                                                                                                                                                                                     | 19,98<br>19,53<br>18,93                                                                                                                                                                                                                     | 25,73<br>24,58<br>222,80<br>22,00<br>21,93                                                                                                                                                                                       | 22,13<br>20,93<br>20,08<br>19,47<br>18,93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|  | Found                                              | z                                  | 27,98<br>23,93                         | 23,88<br>23,99                                                                                                                                           | $\begin{array}{c} 24,30\\ 22,90\\ 22,87\end{array}$                                                                                                                                                                         | 21,87<br>21,30<br>20,71                                                                                                                                                                                                                     | $\begin{array}{c} 27,98\\ 26,48\\ 23,87\\ 23,99\\ 29,88\\ 29,88\end{array}$                                                                                                                                                      | $\begin{array}{c} 24,34\\ 22,90\\ 21,90\\ 21,21\\ 20,73\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|  | Melting<br>point, <sup>C</sup><br>(aqueous<br>DMF) |                                    | $300 \\ 211 - 2$                       | $220-1 \\ 207-8$                                                                                                                                         | 214-5<br>222-3<br>230-1                                                                                                                                                                                                     | 215-6<br>220-1<br>221-2                                                                                                                                                                                                                     | $\begin{array}{c} 215-6\\ 225-6\\ 214-5\\ 229-30\\ 213-4\end{array}$                                                                                                                                                             | 209—10<br>223—4<br>213—4<br>214—5<br>214—5<br>218—9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|  | Yield, %                                           |                                    | 90<br>78                               | 06<br>80                                                                                                                                                 | 76<br>95<br>95                                                                                                                                                                                                              | 73<br>84<br>82                                                                                                                                                                                                                              | 96<br>85<br>69<br>85<br>85<br>85<br>85<br>85<br>86<br>85<br>86<br>85<br>86<br>85<br>86<br>85<br>86<br>85<br>86<br>85<br>86<br>85<br>86<br>85<br>86<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85 | 56<br>56<br>56<br>56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|  | ۲                                                  |                                    | H<br>CH2CH2OH                          | C <sub>3</sub> H <sub>7</sub><br>iso-C <sub>3</sub> H <sub>7</sub>                                                                                       | CH <sub>2</sub> =CH—CH <sub>2</sub><br>C <sub>4</sub> H <sub>9</sub><br>iso-C <sub>4</sub> H <sub>9</sub>                                                                                                                   | Iso-C <sub>5</sub> H <sub>11</sub><br>cyclo-C <sub>6</sub> H <sub>11</sub><br>CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                                                                                                                 | H<br>CH3<br>CH2CH2OH<br>C3H,<br>iso-C3H,                                                                                                                                                                                         | CH <sub>2</sub> =CHCH <sub>2</sub><br>C4H<br><b>iso-C</b> 5H <sub>11</sub><br>cyclo:C <sub>6</sub> H <sub>11</sub><br>CH <sub>2</sub> C <sub>3</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|  | Componind                                          |                                    | 111a<br>1111b                          | IIIc<br>IIId                                                                                                                                             | IIIe<br>IIII f<br>IIII g                                                                                                                                                                                                    | III h<br>III j<br>III k                                                                                                                                                                                                                     | vdc 5 a                                                                                                                                                                                                                          | ۲<br>کرت<br>کرت                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |

| TABLE 2.   | Hypoglycemic  | Activity            | of  | N-Alkyl-N  | '-(2-amino-1,3 | ,4- |
|------------|---------------|---------------------|-----|------------|----------------|-----|
| thiadiazol | -5-ylsulfonyl | L <b>)-</b> (III) a | and | N-Alkyl-N' | -(5-sulfamoy1- | -   |
| 1,3,4-thia | diazol-2-yl)- | -oxamides           | (V) | )          |                |     |

|                                                                                                                             | Time after administration of the preparation, h                                                 |                                                                     |                                                                                                                                                |                                                                                                      |                                                                                                                                                                                                                  |                                                                      |                                                                                                          | LD <sub>50</sub> , mg/kg                |  |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------|--|
| Compound                                                                                                                    | 2                                                                                               | 4                                                                   | 6                                                                                                                                              | 8                                                                                                    | 10                                                                                                                                                                                                               | 12                                                                   | 24                                                                                                       | (intra-                                 |  |
| Compound                                                                                                                    | reduction in sugar level, % of original                                                         |                                                                     |                                                                                                                                                |                                                                                                      |                                                                                                                                                                                                                  |                                                                      |                                                                                                          | peritoneal)                             |  |
| (   a<br>   b<br>   l c<br>   l d<br>   l e<br>   l f<br>   l f<br>   l f<br>   l l j<br>   l k<br>V a<br>V b<br>V b<br>V d | $ \begin{array}{c} 6\\ 5\\ 4\\ 3\\ 7\\ 12\\ 7\\ 15\\ 14\\ 27\\ 26\\ 8\\ 8\\ 4\\ 4 \end{array} $ | 8<br>8<br>5<br>9<br>14<br>8<br>20<br>15<br>28<br>24<br>13<br>7<br>9 | $7 \\ 13 \\ 8 \\ 8 \\ 11 \\ 14 \\ 8 \\ 22 \\ 12 \\ 28 \\ 25 \\ 14 \\ 19 \\ 8 \\ 8 \\ 14 \\ 19 \\ 8 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $ | $ \begin{array}{c} 11\\ 10\\ 7\\ 17\\ 10\\ 13\\ 7\\ 32\\ 14\\ 26\\ 26\\ 15\\ 15\\ 10\\ \end{array} $ | $     \begin{array}{r}       15 \\       11 \\       6 \\       20 \\       10 \\       18 \\       9 \\       26 \\       14 \\       17 \\       20 \\       10 \\       14 \\       13 \\       \end{array} $ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$               | $ \begin{array}{ c c c c } 4 & 3 \\ 5 & 6 \\ 5 & 6 \\ 8 & 11 \\ 7 & 9 \\ 9 & 5 \\ 4 & 3 \\ \end{array} $ | 937<br>728<br>836<br>1235<br>736<br>628 |  |
| ve<br>Vf<br>Vg<br>Vh<br>Vj<br>Vk                                                                                            | 5<br>2<br>16<br>21<br>16<br>7                                                                   |                                                                     | 10<br>10<br>26<br>27<br>24<br>16                                                                                                               | 12<br>9<br>28<br>25<br>24<br>15                                                                      | $ \begin{array}{c c} 11 \\ 6 \\ 31 \\ 24 \\ 24 \\ 17 \\ \end{array} $                                                                                                                                            | $ \begin{array}{c c} 7 \\ 5 \\ 18 \\ 19 \\ 25 \\ 12 \\ \end{array} $ | 5<br>3<br>15<br>8<br>27<br>7                                                                             | 540<br>920<br>!120                      |  |
| Butamide                                                                                                                    | 21                                                                                              | 25                                                                  | 30                                                                                                                                             | 24                                                                                                   | 23                                                                                                                                                                                                               | 19                                                                   | 5                                                                                                        | 700                                     |  |

Reaction of 2-amino-5-sulfamoyl-1,3,4-thiadiazole (I) with diethyl oxalate (in the presence of sodium methoxide) or ethoxalyl chloride gave esters II and IV, respectively, which formed alkylamides III and V with aliphatic amines.

Alkylamides III and V are white crystalline substances, highly soluble in organic solvents and also in alkali solutions.

We verified the homogeneity and structure of the synthetic compounds by elemental analysis, chromatography, and spectroscopy (Table 1).

The IR spectra of alkylamides III and V contain the characteristic stretching bands at 1660-1730 cm<sup>-1</sup> ( $\nu_{CO}$ ) and 3290-3375 cm<sup>-1</sup> ( $\nu_{NH}$ ). The SO<sub>2</sub> modes appear as two intense bands, at 1170-1180 cm<sup>-1</sup> ( $\nu_{SO_2}$ <sup>S</sup>) and at 1355-1370 cm<sup>-1</sup> ( $\nu_{SO_2}$ <sup>as</sup>).

Alkylamides III and V are nitrogen acids. We measured the ionization constants  $(pK_a)$  representing proton loss by potentiometric titration in 60% aqueous dioxane. Table 1 shows that the alkyl substituent in the amide part of the molecule only slightly affects the  $pK_a$ . As would be expected, the replacement of the aromatic radical by the thiadiazole residue in these substituted oxamides entails a considerable reduction in acidity.

We carried out the biological screening of the synthetic compounds for sugar-reducing activity by the ortho-toluidine method [4] and determined the toxicity in white mice by Litchfield and Wilcoxon's method in M. A. Belen'kii's modification. Our results for compounds III and V are summarized in Table 2 in comparison with butamide.

Table 2 shows that the test compounds have sugar-reducing and hypoglycemic effects, which depend on the nature of the alkyl substituent in the amide part of the molecule. The greatest reduction in blood sugar is caused by the alkylamides III containing the iso-pentyl (IIIh) and benzyl (IIIk) substituents and by compounds Vg, Vh, and Vj, which approach or equal butamide in hypoglycemic activity. Alkylamides IIIh, Vg, and Vj retain their sugar-reducing activity for 24 h, whereas by this time butamide scarcely causes any reduction in the blood sugar level.

Among the test compounds N-cyclohexyl-N'-(5-sulfamoyl-1,3,4-thiadiazole-2-yl)oxamide (Vj) demands particular attention; it causes stable hypoglycemia, which reaches its maximum 6 h after administration and lasts for 24 h. Tests of the acute toxicity revealed that this preparation, like several other compounds, is much less toxic than butamide (Table 2). In general these compounds are inferior in sugar-reducing activity to the preparations currently used for the treatment of diabetes. However, our results will be relevant in further searches for effective preparations among analogs of these compounds.

## EXPERIMENTAL CHEMISTRY

The IR spectra were recorded on a UR-20 spectrophotometer in KBr tablets (c 0.5%);  $pK_a$  was measured with a pH-340 instrument in aqueous dioxane solution with mmole concentrations of the compounds. Thin-layer chromatography was carried out on Silufol plates in chloroform-methanol (9:1).

Ethyl (2-Amino-1,3,4-thiadiazol-5-ylsulfonyl)oxamate (II). To sodium methylate, prepared from sodium (0.23 g, 0.01 mole) and absolute methanol (25 ml), were added I (1.80 g, 0.01 mole) and dry diethyl oxalate (1.46 g, 0.01 mole). The reaction mixture was kept at room temperature for 1 h. The methanol was stripped off. The residue was diluted with water and filtered. The filtrate was acidified with dilute hydrochloric acid (1:1) to pH5.0 and the precipitate was dried to give II (1.96 g, 70%) with mp 208-210°C (needles; from DMF-ethanol).

Ethyl (5-Sulfamoyl-1,3,4-thiadiazol-2-yl)oxamate (IV). To a solution of I (3.6 g, 0.02 mole) in glacial acetic acid (15 ml) and pyridine (1.74 g, 0.022 mole) was added oxalic acid monochloride monoethyl ester (3.2 g, 0.022 mole) with stirring and cooling. The reaction mixture was stirred for 1 h at the temperature of the boiling water bath. It was then cooled and diluted with water. The precipitate was filtered off and dried to give IV (3.52 g, 63%), mp 203°C (plates; from ethanol).

<u>N-Butyl-N'-(2-amino-1,3,4-thiadiazol-5-ylsulfonyl)oxamide (IIIf)</u>. To a solution of IV (4.2 g, 0.015 mole) in ethanol (20 ml) was added n-butylamine (2.2 g, 0.03 mole). The reaction mixture was kept at room temperature for 12 h. Water (20 ml) was then added and the mixture was acidified with dilute hydrochloric acid (1:1) to pH 5.0. The precipitate was filtered off and dried. Recrystallization gave IIIf (4.38 g, 95%).

Compounds IIIa-e, g-k, and Va-k were prepared in the same way.

## EXPERIMENTAL BIOLOGY

We assayed the hypoglycemic activity in male rabbits weighing 2-3 kg. The test compounds were administered perorally through a tube in 2% starch base in a dose of 0.05 g/kg. Blood samples for analysis were taken from an ear vein at various times during the 24 h after a single administration of the preparation. We evaluated the hypoglycemic activity in six to ten rabbits. Blood sugar was determined by the ortho-toluidine method [5] and Hagedorn and Jensen's method [5]. Our results were processed statistically. We made a parallel assay of the effect of butamide to compare sugar-reducing activity.

## LITERATURE CITED

- 1. V. P. Chernykh, I. P. Vannyi, T. S. Dzhan-Temirova, et al., Khim. Farm. Zh., No. 9, 49 (1978).
- 2. V. P. Chernykh, I. P. Bannyi, V. I. Makurina, et al., Khim. Farm. Zh., No. 12, 79 (1978).
- 3. V. P. Chernykh, V. I. Makurina, I. M. Timasheva, et al., Farm. Zh., No. 6, 47 (1978).
- 4. A. V. Raitsis and A. O. Ustinova, Lab. Delo, No. 1, 33 (1965).
- 5. N. N. Pushkina, Biochemical Methods of Testing [in Russian], Moscow (1963), pp. 97-102.