Carbonyl propargylation or allenylation by 3-haloprop-1-yne with $tin(\pi)$ halides and tetrabutylammonium halides

Yoshiro Masuyama,*† Akihiro Ito, Mamiko Fukuzawa, Kohji Terada and Yasuhiko Kurusu

Department of Chemistry, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan

3-Bromoprop-1-yne causes carbonyl propargylation with $tin(\pi)$ chloride and tetrabutylammonium bromide in water to produce 1-substituted but-3-yn-1-ols, while 3-chloroprop-1-yne causes carbonyl allenylation with $tin(\pi)$ iodide and tetrabutylammonium iodide in 1,3-dimethylimidazolidin-2-one to produce 1-substituted buta-2,3-dien-1-ols.

Carbonyl propargylation or allenylation by 3-haloprop-1-yne with tin(II) chloride is one of the most convenient methods for introduction of propargyl (prop-2-ynyl) or allenyl functions.1-3 The propargylation or allenylation is promoted by NaI or LiI; it has been presumed that the actual starting material, which reacts with tin(II) chloride, is 3-iodoprop-1-yne derived from the in situ reaction 3-bromoprop-1-yne with NaI or LiI.^{1,3} We have found that carbonyl allylation by allylic acetates, allylic bromides, allylic chlorides and vinyl epoxides with rin(II) halide can be promoted by tetrabutylammonium bromide (TBABr).4-8 A lack of reaction with TBABr might suggest that LiI is required to form the intermediate 3-iodoprop-1-yne.³ Tetrabutylammonium halide (TBAX") probably reacts with tin(II) halide (SnX"2) to form tetrabutylammonium trihalostannate, which is more nucleophilic than SnX"₂. We thus envisioned that TBAX^{'''} would promote carbonyl propargylation or allenylation by 3-haloprop-1-yne with SnX^{''}₂.^{9,10} We here report that using different halogens in SnX"2 and TBAX" affects the selectivity between carbonyl propargylation and allenylation by 3-haloprop-1-yne; carbonyl propargylation occurs with SnCl₂ and TBABr, while carbonyl allenylation occurs with SnI₂ and TBAI.

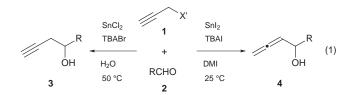
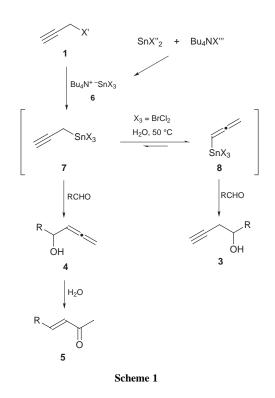

The reaction of 3-haloprop-1-yne **1** and benzaldehyde (2, R = Ph) with SnX"₂ and TBAX"' was investigated under various

Table 1 Propargy lation and all envlation of 2 (R = Ph) with SnX''_2 and TBAX''' a

Entry	X′	X″	TBA X''' (mmol)	Solvent	t/h	Yield (%) 3 + 4 ^b	5 ^c
1	Br	Cl	Br (1)	DMI	24	25 (100:0)	4
2	Br	Cl	Br (1)	THF	10	60 (100:0)	9
3	Br	Cl	Br (1)	$THF-H_2O^d$	8	70 (100:0)	8
4	Br	Cl	Br (1)	CH ₂ Cl ₂ -H ₂ O ^d	8	58 (100:0)	12
5	Br	Cl	_	H_2O	24	17 (100:0)	0
6	Br	Cl	Br (0.1)	H_2O	8	61 (100:0)	13
7^e	Br	Cl	Br (0.3)	H_2O	8	70 (100:0)	9
8	Br	Cl	Br (1)	H_2O	7	72 (100:0)	10
9f	Br	Cl	Br (1)	H_2O	70	44 (100:0)	9
10	Br	Br	Br (1)	H_2O	10	58 (100:0)	15
$11^{f,g}$	Cl	Ι	I (0.1)	THF	70	91 (31:69)	0
12f,g	Cl	Ι	I (0.1)	DMF	28	91 (19:81)	0
$13^{f,g,h}$	Cl	Ι	I (0.1)	DMI	23	78 (4:96)	0
14f,g	Cl	Ι	I (0.1)	$DMI-H_2O^d$	47	57 (33:67)	11

^{*a*} The reaction of 3-haloprop-1-yne (1.5 mmol) and benzaldehyde (1.0 mmol) was carried out with SnX"₂ (1.5 mmol) and TBA in solvent (3 ml) at 50 °C. ^{*b*} Yields of a mixture of **3** (R = Ph) and **4** (R = Ph). The ratio in parentheses was determined by ¹H NMR analysis (JEOL GX-270 or Λ -500). ^{*c*} Isolated yields of **5** (R = Ph). ^{*d*} Organic solvent-H₂O = 1:1. ^{*e*} Method A. ^{*f*} The reaction was carried out at 25 °C. ^{*g*} NaI (1.5 mmol) was added. ^{*h*} Method B.

conditions. The results are summarized in Table 1. The reaction of 3-bromoprop-1-yne (1, X' = Br) with SnCl₂ and TBABr at 50 °C in water led to carbonyl propargylation to produce 1-phenylbut-3-yn-1-ol (3, R = Ph) (entry 7, Method A), while the reaction of 3-chloroprop-1-yne (1, X' = Cl) with SnI₂ and TBAI at 25 °C in 1,3-dimethylimidazolidin-2-one (DMI) led to carbonyl allenylation to produce 1-phenylbuta-2,3-dien-1-ol (4, R = Ph) (entry 13, Method B) [eqn. (1)]. TBAX''' accelerated



the carbonyl propargylation or allenylation; >0.1 equiv. of TBAX''' was required (entries 5-8). In the propargylation the use of SnCl₂ and TBABr (or TBACl) is superior to other combinations of reagents, while SnI₂-TBAI is the best combination of reagents for the allenylation. 3-Chloroprop-1-yne $(\mathbf{1}, \mathbf{X'} = \mathbf{Cl})$ did not react under the same conditions as those of the propargylation with 1 (X' = Br). Water is a more effective solvent in the propargylation than some organic polar solvents, such as DMI and THF, in which both organic substrates and SnCl₂ are soluble (entries 1, 2 and 8). The byproduct produced during the propargylation, 4-phenylbut-3-en-2-one (5, R = Ph), was probably formed by the hydration of allenylated product 4 (R = Ph).³ The reaction of 1 (X' = Cl) and $\hat{2}$ (R = Ph) with SnI₂-TBAI did not occur in water, and proceeded with lower selectivity for the allenylation in DMIwater (entry 14). Thus, water is unsuitable for the allenylation, in which DMI is a better solvent than DMF or THF (entries 11 - 13).

Table 2 Either propargylation or allenylation with SnX"2 and TBAX"

R	Method ^a	<i>t/</i> h	Yield (%) $3 + 4^{b}$	5 ^c
4-MeO ₂ CC ₆ H ₄	А	7	75 (100:0)	14
4-MeO ₂ CC ₆ H ₄	В	24	80 (17:83)	0
4-NCC ₆ H ₄	А	16	77 (100:0)	4
4-NCC ₆ H ₄	В	23	62 (2:98)	0
4-MeC ₆ H ₄	А	20	70 (100:0)	4
4-MeC ₆ H ₄	В	23	53 (7:93)	0
4-MeOC ₆ H ₄	А	16	62 (100:0)	4
4-MeOC ₆ H ₄	В	25	50 (5:95)	0
$Me(CH_2)_6$	А	12	63 (100:0)	0
$Me(CH_2)_6$	В	90^d	50 (7:93)	0
c-C ₆ H ₁₁	А	12	48 (100:0)	7
c-C ₆ H ₁₁	В	88^d	71 (20:80)	0

^{*a*} Method A: Entry 7 in Table 1. Method B: Entry 13 in Table 1. ^{*b*} Yields of a mixture of **3** and **4**. The ratio in parentheses was determined by ¹H NMR analysis (JEOL GX-270 or Λ -500). ^{*c*} Isolated yields. ^{*d*} The reaction was carried out at 0 °C.

The propargylation (Method A) and allenylation (Method B) of various aldehydes by 3-haloprop-1-yne **1** was carried out under the conditions which gave the best results for benzaldehyde, as summarized in Table 2. Aromatic aldehydes bearing an electron-donating or —withdrawing group and aliphatic aldehydes can be used to afford the corresponding 1-substituted but-3-yn-1-ols **3** using the SnCl₂–TBABr/water system or the corresponding 1-substituted buta-2,3-dien-1-ols **4** with the SnI₂–TBAI/DMI system in moderate yields.

A plausible mechanism was illustrated with Scheme 1. The difference between propargylation using the SnCl₂–TBABr/ water system and allenylation using the SnL₂–TBAI/DMI system may be due to the Lewis acidity of the tin, reaction temperature and reaction medium. ¹H NMR (JEOL Λ –500) observation in [²H₇]DMF at 25 °C revealed that prop-2-ynyltriiodotin (7, X = I) was first formed *via* the reaction of

3-chloroprop-1-yne (1, X' = Cl) with SnI₂ and NaI. Prop-2-ynyltriiodotin (7, X = I) probably proceeded *via* γ -addition to the aldehyde (carbonyl allenylation), without isomerizing to propa-1,2-dienyltriiodotin (8, X = I), in dry polar solvents such as DMI and DMF to produce buta-2,3-dien-1-ols 4.‡ In contrast, the isomerization of prop-2-ynylbromodichlorotin (7, X₃ = BrCl₂), derived from reaction of 3-bromoprop-1-yne (1, X' = Br) with SnCl₂ and TBABr at the organic–aqueous interface, to propa-1,2-dienylbromodichlorotin (8, X₃ = BrCl₂) probably occurred more rapidly at 50 °C than carbonyl allenylation by 7 (X₃ = BrCl₂).§ The carbonyl propargylation by 8 (X₃ = BrCl₂) at 50 °C in water thus produced but-3-yn-1-ols 3.¶

Notes and References

† E-mail: y-masuya@hoffman.cc.sophia.ac.jp

[‡] The carbonyl allenylation by **7** (X = I) seems to have proceeded *via* an acyclic antiperiplanar transition state, because of the weakly Lewis acidic tin in **7** (X = I). See ref. 7 and 8.

§ It was shown by ¹H NMR analysis (JEOL Λ -500) that prop-2-ynyltriiodotin (**7**, X = I), derived from 3-chloroprop-1-yne (**1**, X' = Cl) *via* reaction with SnI₂ and NaI in [²H₇]DMF, isomerized easily to propa-1,2-dienyltriiodotin (**8**, X = I) at 50 °C; J. A. Marshall, R. H. Yu and J. F. Perkins, *J. Org. Chem.*, 1995, **60**, 5550.

¶ The carbonyl propargylation by **8** ($X_3 = BrCl_2$), which has a strongly Lewis acidic tin, seems to have proceeded *via* a usual six-membered cyclic transition state.

- 1 T. Mukaiyama and T. Harada, Chem. Lett., 1981, 621.
- 2 G. P. Boldrini, E. Tagliavini, C. Trombini and A. Umani-Ronchi, J. Chem. Soc., Chem. Commun., 1986, 685.
- 3 M. Iyoda, Y. Kanao, M. Nishizaki and M. Oda, Bull. Chem. Soc. Jpn., 1989, 62, 3380.
- 4 Y. Masuyama, in *Advances in Metal-Organic Chemistry*, ed L. S. Liebeskind, JAI, Greenwich, 1994, vol. 3, p. 255.
- 5 Y. Masuyama, J. Nakata and Y. Kurusu, J. Chem. Soc., Perkin Trans. 1, 1991, 2598.
- 6 Y. Masuyama, M. Kishida and Y. Kurusu, J. Chem. Soc., Chem. Commun., 1995, 1405.
- 7 Y. Masuyama, M. Kishida and Y. Kurusu, *Tetrahedron Lett.*, 1996, **37**, 7103.
- 8 Y. Masuyama, A. Ito and Y. Kurusu, Chem. Commun., 1998, 315.
- 9 For selective carbonyl propargylation in Barbier-type procedures, see: H. Tanaka, T. Hamatani, S. Yamashita and S. Torii, *Chem. Lett.*, 1986, 1461 and references cited therein.
- 10 For carbonyl propargylation and allenylation, see: H. Yamamoto, in *Comprehensive Organic Synthesis*, ed B. M. Trost, Pergamon, Oxford, 1991, vol. 2, p. 81.

Received in Cambridge, UK, 6th August 1998; 8/06206D