Chiral Crown Ether Synthesis by Catalysis in a Two Phases System

Pierre DI CESARE, Bernard GROSS*

Université de Nancy I, Laboratoire de Chimie Organique III, Case Officielle 140, F-54037 Nancy, France (ERA CNRS No. 558)

Chiral crown ethers are being studied with growing interest, mainly as models for the study of enzyme-like reactions. Such crown ethers, containing binaphthyl groups, have been prepared and their capacity to resolve racemic amino acids or chiral amine salts has been studied^{1–5}. More recently, the osidic substrates, as an inexpensive source of chiral bis[methylenedioxy]moieties, have been used^{6–10}.

Many of the preparative methods described so far give mixtures, involve the preparation of ditosylate derivatives and their subsequent condensation with a diol. These reactions often proceed in poor yields.

The results that we have obtained in the synthesis of ethers and of acetals in the sugar series¹¹ led us to study the reactions between the bis[2-chloroethy1] ether or the 1,2-bis[2-chloroethoxy]ethane (used as solvent and reagent) and sugars having two free adjacent hydroxy groups. When the reaction is carried out in the presence of a concentrated

0039-7881/79/0632-0458 \$ 03.00

© 1979 Georg Thieme Publishers

June 1979 Communications 459

n = 1 or 2

Scheme A

aqueous sodium hydroxide solution containing a small amount of an ammonium salt, we have been able to prepare bis[chloroalkoxy] derivatives of sugars in good yields.

Thus, the substrates 1 to 5 (see Scheme B) react at room temperature with the bis[2-chloroethyl] ether in the presence of tetrabutylammonium hydrogen sulfate and 50% aqueous sodium hydroxide to give bis[2-chloroethoxyethoxy] derivatives 6 to 10 according to Scheme A.

The substrates 1 and 2 react under the same conditions with the 1,2-bis[2-chloroethoxy]ethane to give the compounds 11 and 12 (Scheme B). The best yields are obtained with a 0.5 molar quantity (based on free hydroxy group) of ammonium salt. If this quantity is lowered, the reaction is slower and does not go to completion.

13-19

The bis[2-chloroethoxyethoxy] derivatives have been cyclized with catechol according to a method described¹² which

17

Scheme B

16

requires dry sodium hydroxide in *n*-butanol as a solvent. We thus obtained the crown ethers 13 to 19 (Scheme B) in good overall yields. All attempts to accomplish the cyclization by catalysis in a two phase system resulted in elimination of two molecules of hydrochloric acid from the bis[2-chloroethoxyethoxy] derivatives.

The compounds involved are given in Scheme **B** and their physical characteristics are listed in the Table.

460 Communications synthesis

Table. Chiral Crown Ethers 13-19 and Bis[2-chloroethoxy] Precursors 6-12 (see Scheme B)

				-	* 3	`	
Sub- strate	Prod- uct	Reaction time [h]	Yield [%]	m.p.	$[\alpha]_D^{20}$ (c in CHCl ₃)	Molecular formula ^a	¹H-N.M.R. (CDCl₃) δ [ppm]
113	6	8	80	6263°	+42.9° (1.42)	C ₂₂ H ₃₂ Cl ₂ O ₈ (495.4)	3.38 (s, 3H); 4.35-3.45 (m, 22H); 4.8 (d, 1H, $J_{1,2}$ = 3.3 Hz); 5.47 (s, 1H); 7.2-7.4 (m, 5H)
2 ^b	7	24	85	gum	+41.6° (2.3)	C ₁₈ H ₃₂ Cl ₂ O ₈ (447.4)	1.29 (s, 3 H); 1.45 (s, 3 H); 3.35 (s, 3 H); 3.45-4.40 (m, 21 H); 4.52 (d, 1 H, J=4.2 Hz); 5.85 (d, 1 H, J =4.2 Hz)
313	8	18	72	gum	+23.2° (1.13)	C ₂₂ H ₃₂ Cl ₂ O ₈ (495.4)	3.35 (s, 3H); 3.45-4.40 (m, 22H); 4.75 (m, 1H); 5.5 (s, 1H); 7.2-7.6 (m, 5H)
414	9	12	90	gum	+74.8° (2.72)	C ₁₆ H ₂₈ Cl ₂ O ₇ (403.3)	1.34 (s, 3 H); 1.52 (s, 3 H); 3.5–4.5 (m, 21 H); 4.90 (d, 1 H, $J_{1-2} = 4$ Hz)
5	10	12	70	gum	(C ₁₄ H ₂₆ Cl ₂ O ₄ (329.3)	1.0-2.3 (m, 8 H); 3.1-3.4 (m, 2 H); 3.5-4.0 (m, 16 H)
1	11	24	65	gum	+31.1° (1.59)	C ₂₆ H ₄₀ Cl ₂ O ₁₀ (583.5)	3.38 (s, 3H); 3.45 4.35 (m, 30H); 4.8 (d, 1 H, <i>J</i> = 3.3 Hz); 5.47 (s, 1 H); 7.2-7.4 (m, 5 H)
2	12	24	72	gum	+57.2° (1.34)	C ₂₂ H ₄₆ Cl ₂ O ₁₀ (535.5)	1.29 (s, 3 H); 1.45 (s, 3 H); 3.35 (s, 3 H); 3.45-4.40 (m, 29 H); 4.52 (d, 1 H, J = 4.2 Hz); 5.85 (d, 1 H, $J = 4.2$ Hz)
6	13	8	68	129-130°	+14.1° (2.6)	$C_{28}H_{36}O_{10}$ (532.6)	3.37 (s, 3H); 3.45-4.4 (m, 22H); 4.80 (d, 1H, <i>J</i> = 3.3 Hz); 5.48 (s, 1H); 6.86 (s, 4H); 7.2-7.6 (m, 5H)
7	14	8	65	gum	+ 53.8° (1.85)	C ₂₄ H ₃₆ O ₁₀ (484.6)	1.29 (s, 3H); 1.45 (s, 3H); 3.37 (s, 3H); 3.45-4.40 (m, 21H); 4.52 (d, 1H, J=4.2Hz); 5.85 (d, 1H, J=4.2Hz); 6.83 (s, 4H)
8	15	8	70	gum	+41.2° (0.9)	$C_{28}H_{36}O_{10}$ (532.6)	3.05 (s, 3 H); 3.4–4.4 (m, 22 H); 4.60 (m, 1 H); 5.55 (s, 1 H); 6.85 (s, 4 H); 7.15–7.60 (m, 5 H)
9	16	8	72	gum	+84.4° (2.5)	C ₂₂ H ₃₂ O ₉ (440.5)	1.34 (s, 3H); 1.52 (s, 3H); 3.4-4.5 (m, 21H); 4.90 (d, 1H, $J=4$ Hz)
10	17	8	70	73–74°		$C_{20}H_{30}O_6$ (366.5)	0.9-2.2 (m, 8 H); 3.0-3.35 (m, 2 H); 3.6-4.3 (m, 16 H); 6.87 (s, 4 H)
11	18	8	70	105107°	+32.7° (1.81)	C ₃₂ H ₄₄ O ₁₂ (620.7)	3.38 (s, 3H); 3.45-4.4 (m, 30H); 4.81 (d, 1H, <i>J</i> =3.3 Hz); 5.47 (s, 1H); 6.86 (s, 4H); 7.2-7.6 (m, 5H)
12	19	8	75	gum	+93.4° (1.07)	C ₂₈ H ₄₄ O ₁₂ (572.6)	1.29 (s, 3 H); 1.45 (s, 3 H); 3.38 (s, 3 H); 3.5–4.3 (m, 30 H); 4.52 (d, 1 H. $J = 4.2$ Hz); 6.87 (s, 4 H); 5.85 (d, 1 H. $J = 4.2$ Hz)

All products gave satisfactory microanalysis (C ±0.2; H ±0.3; Cl ±0.3); performed by Centre de Microanalyse du CNRS, Lyon.
 Prepared from 1,2;5,6-di-O-isopropylidene-α-D-glucofuranose; methylation according to Ref. 11 and partial deprotection by aqueous acetic acid 15.

Methyl 4,6-O-Benzylidene-2,3-bis-O-[(2-chloro-ethoxy)-ethyl]-2-D-glucopyranoside (6):

A solution of $1(1.12 \, g, 4 \, \text{mmol})$ and of tetrabutylammonium hydrogen sulfate (1.3 g, 4 mmol) in bis[2-chloroethyl] ether (10 ml) is vigorousy stirred at room temperature with a 50 % aqueous sodium hydroxide solution (10 ml). The reaction is monitored by T.L.C. (eluent: ether/chloroform, 1/1) and is complete after 8 h. Dichloromethane (50 ml) and water (50 ml) are added to the reaction mixture. The organic phase is decanted and the aqueous phase is washed with dichloromethane (2 × 30 ml). The organic phases are combined and washed with water (2 × 20 ml), dried with magnesium sulfate, filtered, and concentrated under vacuum. The resultant gum is eluted through a silica gel column with ether to yield a white solid which is recrystallized from ethanol; yield: 1.57 g (80%); m.p. 62-63°; $[\alpha]_0^{20}$: $+42.9^{\circ}$ (c 1.42, CHCl₂).

Methyl 4,6-O-benzylidene-2,3-O-{1,2-bis[ethoxyethoxy]-benzenediyl}-\u03c4-D-glucopyranoside (13):

Catechol (330 mg, 3 mmol) is dissolved in *n*-butanol (6 ml). Argon is bubbled through this solution in order to remove oxygen and then dry sodium hydroxide powder (240 mg, 6 mmol) is added. The mixture is stirred and heated under reflux. After 0.5 h, a

solution of 6 (1.5 g, 3 mmol) dissolved in *n*-butanol (4 ml) is added under an inert atmosphere. The resultant reaction mixture is stirred and heated under reflux for 8 h. After cooling, the mixture is extracted with chloroform (50 ml), the extract is washed with water (3 × 20 ml), dried with magnesium sulfate, and evaporated. The residue is eluted through a neutral alumina column (80 g, ether/chloroform, 1:1) and crystallized from a mixture of benzene and petroleum ether; yield: 1.09 g (68 %); m.p. 129 130°: $[\alpha]_{\rm b}^{20}$: +14.1° (c 2.6, CHCl₃).

The financial support of the DGRST (Décision d'aide nº 77-7-0748) is gratefully acknowled.jed.

Received: March 5, 1979

¹ E. B. Kyba et al., J. Am. Chem. Soc. 95, 2692 (1973).

² R. C. Hegelson, K. Koga, J. M. Timko, D. J. Cram, J. Am. Chem. Soc. 95, 3021 (1973).

³ R. C. Hegelson, J. M. Timko, D. J. Cram, J. Am. Chem. Soc. 95, 3023 (1973).

⁴ R. C. Hegelson et al., J. Am. Chem. Soc. **96**, 6762 (1974).

⁵ J. M. Tinko et al., J. Am. Chem. Soc. 97, 7097 (1974).

- ⁶ D. A. Laidler, J. F. Stoddart, Carbohydrate Res. 55, C1 (1977).
- ⁷ W. D. Curtis et al., Carbohydrate Res. 55, C17 (1977).
- ⁸ W. D. Curtis, D. A. Laidler, J. F. Stoddart, G. H. Jones, J. Chem. Soc. Perkin Trans. 1 1977, 1756.
- ⁹ N. Ando, Y. Yamamoto, J. Oda, Y. Inouye, Synthesis 1978, 688
- W. Hain, R. Lehnert, H. Röttele, G. Schröder, Tetrahedron Lett. 1978, 625.
- ¹¹ P. Di Cesare, B. Gross, Carbohydrate Res. 48, 271 (1976).
- ¹² S. Kopolov, T. E. H. Esch, J. Smid, *Macromolecules* 6, 133 (1973).
- ¹³ N. K. Richtmyer, Methods in Carbohydrate Chemistry, Vol. I, Academic Press, New York, 1962, p. 108.
- ¹⁴ M. Kiso, A. Hasegawa, Carbohydrate Res. 52, 95 (1976).
- ¹⁵ B. S. Shasha, W. Doane, Carbohydrate Res. 34, 370 (1974).

0039-7881/79/0632-0461 \$ 03.00

© 1979 Georg Thieme Publishers