

0040-4039(95)00625-7

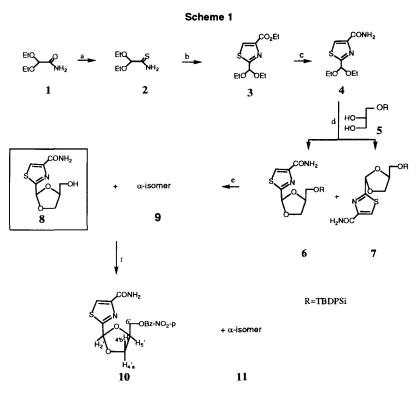
NOVEL C-NUCLEOSIDE ANALOGS OF 1,3-DIOXOLANE: SYNTHESIS OF ENANTIOMERIC (2'R,4'S)- AND (2'S,4'R)-2-[4-(HYDROXYMETHYL)-1,3-DIOXOLAN-2-YL]-1,3-THIAZOL-4-CARBOXAMIDE

Yuejun Xiang+, Quincy Teng# and Chung K. Chu+*

Department of Medicinal Chemistry, College of Pharmacy+ and Department of Chemistry#, The University of Georgia, Athens, Georgia 30602

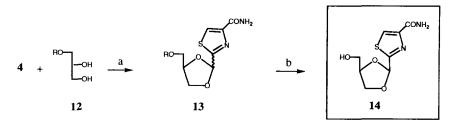
Abstract. Novel C-nucleosides (2'R,4'S)-and (2'S,4'R)-2-[4-(hydroxymethyl)-1,3-dioxolan-2-yl]-1,3-thiazole-4-carboxamide have been synthesized from stereoselectively induced condensation of optically active triols (S or R) with a 1,3-thiazole-4-carboxamide derivative.

Since the anti-HIV activity of (\pm) -dioxolane-thymine has been reported by Belleau et al,¹ a number of 1,3dioxolane nucleosides have been synthesized as potential anti-HIV and anti-HBV agents.²⁻¹⁰ Among the dioxolane nucleosides, (-)-(2'R,4'R)-(dioxolan-4-yl)-guanine (DG) and (-)-(2'R,4'R)-(dioxolan-4-yl)-2,6diaminopurine (DAPD)⁴ are currently undergoing preclinical evaluations as anti-HIV and anti-HBV agents, respectively. These nucleosides are enantiomerically pure compounds which have been synthesized from carbohydrate chiral templates with a defined stereochemistry. Tiazofurin, 2-(β -D -ribofuranosyl)-1,3-thiazol-4carboxamide¹¹⁻¹³ is an interesting synthetic C-nucleoside which has demonstrated potent antitumor activity against several murine tumors and antiviral activities *in vitro*. It has been undergoing phase I¹² and phase II¹³ clinical trials as an antitumor agent against lung cancer. Therefore, in this communication, we wish to report a novel class of dioxolane C-nucleosides as analogs of tiazofurin.


Due to previous difficulties experienced in building up a heterocyclic moiety from a dioxolane ring for Cnucleosides, our strategy in the current synthesis was to construct C-nucleosides by direct condensation of an appropriate heterocyclic base containing dimethylacetal with a chiral triol such as 5 for the construction of the dioxolane ring. Thus, 1,3-thiazole derivative 4 was prepared from commercially available 2,2-diethoxyacetamide in a one-pot reaction (three steps) in overall yield of 26%. 2,2-Diethoxyacetamide 1 was sulfurized by P_2S_5 in 1,4-dioxolane at room temperature for 30 min to give the intermediate 2 (Scheme 1), which was immediately separated by a short silica gel column to avoid polymerization. The separated intermediate 2 was treated immediately with ethyl bromopyruvate in refluxing ethanol for 4 h to obtain 1,3-thiazole intermediate 3. Due to difficulties in isolating the pure product 3 from the reaction mixture, the crude product 3 was used directly for the amination reaction. After amination of the compound 3 in saturated methanolic ammonia at room temperature for 24 h, the desired compound 4 could be readily separated by silica gel column chromatography. Upon recrystallization from ethyl acetate and hexanes, pure compound 4 was obtained as a light yellow solid. The asymmetrically induced condensation was accomplished by refluxing a mixture of 4 and an optically active triol (S-configuration) 5 with TsOH in benzene, during which one-half of the solvent was distilled out. The condensation gave a mixture of α and β -isomers (78%) in a ratio of 1:4 based on ¹H NMR spectroscopy, in

which the major compound (β -isomer) 6 showed the upfield shift for H-2'(δ 6.08), compared to the minor compound (α -isomer) 7 for H-2'(δ 6.20). Based on the above differences in chemical shifts of H-1'(H-2' in thiazole C-nucleosides) in C-nucleosides,¹⁴⁻¹⁵ we assigned the β -and α -anomeric configuration for 6 and 7, respectively. The mixture of 6 and 7 gave only one spot on a silica gel TLC plate in various solvent systems. Therefore, the mixture could not be separated into single isomers at this stage. The mixture of 6 and 7 was treated with n-Bu₄NF in THF at room temperature for 1h to give a mixture of free nucleosides 8 and 9 as a syrup in 92% yield. Again, the mixture could not be separated on a silica column due to the overlapping R_f values on a TLC plate in various conditions. According to ¹H NMR spectroscopy, the ratio of the major product to the minor compound was 4:1. On the basis of the difference in chemical shift of H-2', we assigned the major compound as the β -configuration, which exhibited upfield chemical shifts of H-2' (δ 6.03), compared to the minor compound (the α -isomer) with the chemical shift of H-2' (δ 6.20), which is consistent with the previous assignment of the anomeric configurations of 6 and 7. Fortunately, the major compound 8^{16} could be separated by the careful recrystallization of the mixture of 8 and 9 from methanol and diethyl ether (1:1) at low temperature (0° C). The minor α -isomer could not be isolated as a pure product. Due to the failure of isolating the major compound 8 in our earlier experiment, we reprotected the nucleoside mixture of 8 and 9 with 4-nitrobenzoyl chloride in CH_2Cl_2 to obtain 4-nitrobenzoylated derivatives, which could be recrystallized from methanol to give the pure isomer 10¹⁷ as a white solid. Again, the α -isomer could not be isolated as a single product. The configuration of compound 10 was assigned based on two dimensional NOESY NMR experiments, in which the strong NOE of H-2' and H-4", and H-2' and H-5' a were observed. Based on these results, we unambiguously assigned the compound 10 as the β -isomer, which is consistent with the previous assignment for the major compound 8 as the ß-isomer.

Optically pure (2'S,4'R)-2-[4-(hydroxymethyl)-1,3-dioxolan-2-yl]thiazole-4-carboxamide 14¹⁸, an enantiomer of **8** was also synthesized from a similar procedure as described above (Scheme 2). The condensation of **4** with an optically pure triol (R-configuration) 12 gave a mixture of α - and β -isomers in 81% yield with a ratio of 1:4 according to ¹H NMR spectroscopy. The mixture was deprotected and recrystallized from methanol and diethyl ether (1:1) at 0° C to obtain the pure compound 14 (46%). ¹H NMR spectroscopy confirmed the compound 13 as the β -isomer, which exhibits nearly the identical chemical shifts as well as the pattern of the β -*L*-isomer **8**.


In summary, we have synthesized a hitherto unknown dioxolane C-nucleosides 8 (*L*-form) and its enantiomer 14 (*D*-form) from the condensations of the 1,3-thiazole-4-carboxamide derivative 4 with an optically active D (or S)- 5 and L (or R)- 12 triols, respectively. The above described synthetic strategy of dioxolane C-nucleosides should be applicable for the synthesis of various pyrimidine and purine dioxolane-C-nucleosides, of which efforts are currently in progress in our laboratory.

Biological evaluations of the synthesized compounds are in progress and will be reported elsewhere in case of positive data.

a. $P_4S_{10}/Dioxane, r.t., 30min; b. Ethyl bromopyruvate/EtOH, reflux, 5h; c. NH₃/MeOH, r.t., 1h; d. Benzene/TsOH, reflux, 3h; e. n-Bu₄NF/THF, r.t., 1h; f. p-NO₂BzCl/Py, r.t., 10h.$

Scheme 2

R=TBDPSi

a. Benzene/TsOH, reflux, 2h; b. n-Bu₄NF/THF, r.t., 30min.

Acknowledgements: This research was supported by U.S. Public Health Service Research grants (AI32351 and AI3365) from the National Institutes of Health and Research Center for New Drug Development, Seoul National University.

References and Notes:

- 1. Belleau, B.; Dixit, D.; Nguyen-Ga, N.; Kraus, J. L. International Conference on AIDS, Montreal, Canada, June 4-9, **1990**, paper no. T.C.O.I.
- 2. Norbeck, D. W.; Spanton, S.; Broder, S.; Mitsuya, H. Tetrahedron Lett. 1989, 30, 6263.
- Choi, W. B.; Wilson, L. J.; Yeola, S.; Liotta, D. C.; Schinazi, R. F. J. Am. Chem. Soc. 1991, <u>113</u>, 9377.
- Kim, H. O.; Schinazi, R. F.; Nampalli, S.; Shanmuganathan, K.; Cannon, D. L.; Alves, A. J.; Jeong, L. S.; Beach, J. W.; Chu, C. K. J. Med. Chem. 1993, <u>36</u>, 30.
- Kim, H.O.; Schinazi, R.F.; Shanmuganathan, K.; Jeong, L.S.; Beach, J.W.; Nampalli, S.; Cannon, D. L.; Alves, A.; Chu, C.K. J. Med. Chem. 1993, <u>36</u>, 519.
- Kim, H,O.; Shanmuganathan, K.; Alves, A.; Jeong, L.S.; Beach, J.W.; Cheng, Y.-C.; Chu, C.K. Tetrahedron Lett. 1992, <u>33</u>, 6899.
- Chu, C. K.; Ahn, S. K.; Kim, H. O.; Alves, A. J.; Beach, J. W.; Jeong, L. S.; Islam, Q.; Van Roey, P.; Schinazi, R. F. *Tetrahedron Lett.* 1991, <u>33</u>, 3791.
- Wilson, W. J.; Choi, W. B.; Spurling, T.; Liotta, D. C.; Schinazi, R. F.; Cannon, D.; Painter, G. R.; St. Clair, M.; Furman, P. A. Bioorg. Med. Chem. Lett. 1993, <u>3</u>, 169.
- Belleau, B. R.; Evans, C. A.; Tse, H. L. A.; Jin, H.; Dixit, D. M.; Mansour, T. S. Tetrahedron Lett. 1992, <u>33</u>, 6949.
- 10. Siddiqui, M. A.; Brown, W. L.; Nguyen-Ba, N.; Dixit, D. M.; Mansour, T. S. Bioorg. Med. Chem. Lett. 1993, <u>3</u>, 1543.
- Srivastava, P. C.; Pickering, M. V.; Allen, L. B.; Streeter, D. G.; Campbell, M. T.; Witkowski, J. T.; Sidwell, R.W.; Robins, R. K. J. Med. Chem. 1977, 20, 256.
- Melink, J. T.; von Hoff, D. D.; Koeller, J. M.; Kuhn, J. G.; Hersh, M. R.; Sternson, L. A.; Palton, T. F.; Siegler, R.; Boldt, D. H.; Clark, G. M. Cancer Res. 1985, 45, 2859.
- 13. Carney, D. N.; Ahluwalia, G. S.; Jayaram, H. N.; Cooney, D. A.; Johns, D. G. J. Clin. Invest. 1985, <u>75</u>, 175.
- 14. Doboszewski, B.; Chu, C. K.; Van Halbeek, H. J. Org. Chem. 1988, 53, 2772.
- 15. Chu, C. K.; El-Kabbani, F. M.; Thompson, B. B. Nucleosides & Nucleotides 1984, 3, 1.
- 16. Compound 8: $[\alpha]_D$ +6.0 [c=0.56, MeOH]; UV(H₂O) λ_{max} 238.5 (ϵ 4870) (pH 2), 239.2 (ϵ 4120) (pH 7), 237.0 (ϵ 5650) (pH 11); ¹H NMR (DMSO-d₆) δ 8.32 (s, 1H, H-5), 7.76 (bs, 1H, NH), 7.59 (bs, 1H, NH), 6.03 (s, 1H, H-2'), 5.00 (t, J=5.6Hz, 1H, 6-OH), 4.25 (m, 1H, H-4'), 4.09 (t, J=8.0Hz, 1H, H-5'a), 3.90 (dd, J=6.0 and 8.0Hz, 1H, H-5'b), 3.52 (m, 2H, H-6'); Anal calcd for C₈H₁₀N₂O₄S + 0.1Et₂O: C,42.25; H, 4.67; N,11.78. Found: C, 42.32; H,4.90; N, 11.51.
- 17. Compound 10: $[\alpha]_D$ +7.2 [c 0.51, MeOH]; ¹H NMR (DMSO-d₆) δ 8.14-8.31 (m, 5H, H-5 and Ar), 7.15 (bs, 1H, NH), 6.13 (s, 1H, H-2'), 5.90 (bs, 1H, NH), 4.69 (m, 1H, H-4'), 4.62 (dd, J=4.2 and 7.6Hz, 1H, H-6'), 4.52 (dd, J=5.3 and 11.2Hz, 1H,H-6'), 4.30 (t, J=6.4Hz, 1H, H-5a'), 4.17(dd, J=5.5and 8.5Hz, 1H, H-5b'); Anal calcd for C₁₅H₁₃N₃O₆S + 0.75H₂O: C,47.81; H, 3.87; N,11.15. Found: C, 47.49; H,3.55; N, 11.07.
- 18. Compound 14: $[\alpha]_D$ -5.6 [c 0.56, MeOH]; UV(H₂O) λ_{max} 238.5 (ϵ 4670) (pH 2), 239.2 (ϵ 4320) (pH 7), 237.0 (ϵ 5850) (pH 11); ¹H NMR (DMSO-d₆) δ 8.49 (s, 1H, H-5), 7.87 (bs, 1H, NH), 7.72(bs, 1H, NH), 6.21 (s, 1H, H-2'), 5.12 (t, J=5.0Hz, 1H, 6'-OH), 4.43 (m, 1H, H-4'), 4.28 (t, J=7.2Hz, 1H, H-5'a), 4.09 (dd, J=6.2 and 8.0Hz, 1H, H-5'b), 3.72 (m, 2H, H-6'); Anal calcd for C₈H₁₀N₂O₄S: C,41.73; H, 4.37; N,12.17. Found: C, 41.60; H,4.42; N, 12.02.

(Received in USA 18 January 1995; revised 3 March 1995; accepted 17 March 1995)