A Facile Baker-Venkataraman Synthesis of Flavones using Phase Transfer Catalysis

P. K. JAIN, J. K. MAKRANDI¹, S. K. GROVER*

Department of Chemistry, University of Delhi, Delhi-110 007, India

Flavones are an important class of compounds belonging to the flavonoid group, which have been largely synthesised either by the Allan-Robinson method² of dry heating a mixture of an appropriately substituted o-hydroxyacetophenone with an acid anhydride in the presence of the sodium salt of the acid or the Baker³-Venkataraman⁴ method starting from ohydroxyacetophenones, converting them into the corresponding o-aroyloxyacetophenones, transformation of these into ohydroxydibenzoylmethanes with pyridine/alkali, followed by cyclisation. The stepwise Baker-Venkataraman synthesis was modified by Seshadri et al.5 by refluxing o-hydroxyacetophenones with aroyl chloride in acetone containing anhydrous potassium carbonate, which gave directly the o-hydroxydibenzoylmethanes required for cyclisation to flavones. However, this simplified procedure was reported⁵ to have its limitations. Thus, 2-hydroxy-4,6-dimethoxy- and 2-hydroxy-3-methyl-4,6dimethoxyacetophenones failed to undergo conversion into

0039-7881/82/0332-0221 \$ 03.00

© 1982 Georg Thieme Verlag · Stuttgart · New York

the corresponding dibenzoylmethanes. The inactivity of these acetophenones was attributed to the resonance effect of the methoxy groups⁵.

We present below an extremely facile procedure for the synthesis of flavones 3. An o-hydroxyacetophenone 1, containing methoxy or methyl groups at various positions (Table), was treated with an aroyl chloride 2 in benzene solution under phase transfer-catalysed conditions, using n-tetrabutylammonium hydrogen sulphate, resulting in the formation of the corresponding o-hydroxydibenzoylmethanes. The benzene solution, on treatment with p-toluenesulphonic acid afforded the flavones 3 in excellent yields. However, in the absence of the phase transfer catalyst, o-aroyloxyacetophenones were the

in the presence of *n*-tetrabutylammonium hydrogen sulphate (1.5 mmol) for 2-3 h until the starting acetophenone and the first formed o-aroyloxyacetophenone disappear (T.L.C.). During this period the benzene solution acquires a deep yellow to orange colour. The benzene solution is separated, washed thoroughly with water $(3 \times 20 \text{ ml})$, and the water removed from it by azeotropic distillation. p-Toluenesulphonic acid (9.0 mmol) is added together with dry benzene (25-50 ml) and azeotropic removal of water continued (30-45 min). Excess p-toluenesulphonic acid is extracted from the benzene solution with 8% aqueous sodium hydrogen carbonate solution (50 ml). The benzene phase is evaporated and the residue dried in vacuum over phosphorus pentoxide. The residue is recrystallised from ethyl acetate/light petroleum ether or benzene/light petroleum ether to give the desired flavone 3 (Table).

> Received: August 25, 1981 (Revised form: October 21, 1981)

- Address for correspondence.
- Present address: Department of Chemistry, M. D. University, Rohtak-124001, India.
- J. Allan, R. Robinson, J. Chem. Soc. 125, 2192 (1924).
- W. Baker, J. Chem. Soc. 1933, 1381.
- H. S. Mahal, K. Venkataraman, Curr. Sci. 4, 214 (1933).
- V. N. Gupta, T. R. Seshadri, J. Sci. Industr. Res. (India) [B] 16, 116 (1957); C. A. 52, 9097 (1958).
- O. Dann, G. Mylius, Justus Liebigs Ann. Chem. 587, 1 (1954).

Table. Flavones 3a-n prepared

Product No.	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	R ⁴	R ⁵	R ⁶	Base used	Yield [%]	m.p. [°C]	
									found	reported
3a	Н	Н	H	Н	Н	Н	K ₂ CO ₃	92	99-100°	96-97°6
3b	Н	Н	Н	Н	OCH_3	Н	K_2CO_3	92	158~159°	157-158° 7
3c	Н	OCH ₃	Н	Н	Н	Н	K ₂ CO ₃	95	110°	110°8
3d	Н	OCH ₃	Н	Н	OCH ₃	Н	K_2CO_3	92	140-141°	144-146°9
3e	Н	Н	CH ₃	Н	Н	Н	K_2CO_3	92	121-122°	122°6
3f	Н	H	CH ₃	Н	OCH_3	Н	K_2CO_3	95	170-171°	170°9
3g	CH_3	OCH ₃	Н	Н	Н	Н	K_2CO_3	95	174-175°	175-176° 10
3h	Н	OCH ₃	CH_3	Н	Н	Н	K_2CO_3	92	158-159°	a ·
3i	H	OCH ₃	Н	OCH_3	Н	Н	K_2CO_3	92	149°	142-143° 11
3j	H	OCH ₃	Н	OCH ₃	OCH_3	Н	K_2CO_3	92	154-155°	156°8
3k	CH ₃	OCH ₃	Н	OCH ₃	Н	Н	кон	95	230-232°	231° 12
31	CH ₃	OCH ₃	Н	OCH ₃	OCH ₃	Н	кон	95	228-229°	230-231° 13
3m	Н	OCH ₃	Н	Н	OCH ₃	OCH_3	K_2CO_3	94	173-174°	176° 14
3n	Н	OCH ₃	H	OCH ₃	OCH ₃	OCH ₃	K ₂ CO ₃	92	188-189°	190-192°8

H 5.30 C₁₇H₁₄O₃ calc. C 76.68 (266.3)found 76.50 5.60

This method is of general applicability. Even 2-hydroxy-4,6dimethoxy- and 2-hydroxy-3-methyl-4,6-dimethoxyacetophenones have now been found to undergo smooth conversion under the present conditions.

Flavones 3; General Procedure:

The o-hydroxyacetophenone 1 (3.0 mmol) and the aroyl chloride 2 (3.6 mmol) in benzene (20 ml) are magnetically stirred at 80°C with 10% aqueous potassium carbonate or potassium hydroxide solution (20 ml)

- ⁷ Y. Okajima, Yakugaku Zasshi 80, 322 (1960); C. A. 54, 18487 (1960).
- N. Narasimhachari, T. R. Seshadri, Proc. Ind. Acad. Sci. [A] 30, 151 (1949); C. A. 45, 10242 (1951).
- D. M. Fitzgerald, J. F. O'Sullivan, E. M. Philbin, T. S. Wheeler, J. Chem. Soc. 1955, 860.
- M. V. Shah, S. Sethna, J. Ind. Chem. Soc. 39, 507 (1962).
- K. C. Gupta, K. Venkataraman, J. Chem. Soc. 1936, 267.
- S. Matsuura, Chem. Pharm. Bull. (Tokyo) 5, 195 (1957).
- J. Chopin, M. Chadenson, C. R. Acad. Sci. Paris Ser. C 262, 662 (1966).
- G. W. K. Cavill, F. M. Dean, A. McGookin, B. M. Marshall, A. Robertson, J. Chem. Soc. 1954, 4573.

¹H-N.M.R. (CDCl₃/TMS): $\delta = 2.25$ (s, 3 H); 3.90 (s, 3 H); 6.65 (s, 1 H); 6.80 (s, 1 H); 7.3-7.9 ppm (m, 6 H).