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Abstract: An cfficient preparative method for the enantiomerically pure juvenile hormone IT has been
developed by applying the diastereosclective alkylation and carbonyl reduction of an optically pure B-
keto sulfoxide as the key steps.

Juvenile hormones of farnesoate and its homologous group are well known to play major roles in
regulating the development and reproduction of many insect species and are still the constant subject of
enormous interest in the field of synthetic organic chemistry as well as biology and biochemistry.l) The
success of enantiomerically pure JH's syntheses and the evaluation of their biological activities by Mori and his
coworkers show it to be important to employ the enantiomerically pure specimen for the study of such biological
activities.23 Here we report a novel asymmetric synthesis of JH II (1) in optically pure form, based on the
diastereoselective alkylation and carbonyl reduction of an optically pure f-keto sulfoxide as the key steps.
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Scheme 1 shows our synthetic strategy, in which the final stage to JH II via epoxy ring formation requires
to set the stereocenters 10R,11R in the hydroxy sulfide i; the C-10 stereogenic center of i would be derived
from the dialkylated keto sulfoxide ii under the chelation-controlled reduction conditions.4) The requisitwe 11X,
Ss keto sulfoxide ii would be derived from the keto sulfoxide iii via stepwise dialkylation. The problem
associated with this route is the stereochemistry of the second alkylation stage, that is, the desired C-11
stereochemistry in ii should be derived from iii first by methylation and then ethylation, or by the reverse order.
At the outset of the project, no reports on this stereochemical problem had appeared. However, Ogura and
coworkers recently reported on the diastereoselective alkylation of f-keto sulfoxides in which the second
alkylation occurs mainly from the tolyl side when the transition state is depicted in Scheme 2.5 According to
their results, the sulfoxide ii could be obtained from (iii first by ethylation and then methylation in order.
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When the keto sulfoxide 26) was initially alkylated with Etl under the usual conditions (NaH, DMF), the
yield of the mono-alkylated product 3 was extremely low (~30%) due to the formation of the di- and
triethylation products as well as the O-alkylation products. Attempts to improve the yield under a variety of
conditions were unsuccessful. Next, we examined an alternative route involving the condensation of the
lithium carbanion of (R)-propyl tolyl sulfoxide (4 )7 with an ester (Scheme 3). Thus, the lithium carbanion of
4, generated with LDA, was treated with the ester 58) fumnishing quantitatively a diastercomeric mixtre (ca.
1:1) of the ethylated product 3. The second alkylation of 3 with Mel in the presence of NaH in DMF afforded
the dialkylated keto sulfoxide 6 (diastereoselectivity,9:1 ).9) At this stage, it was impossible to determine
rigorously the stereostructures of the dialkylated products by means of the NMR techniques including COSY
and NOESY experiments. Accordingly, the major alkylated product was tentatively assigned to be 6, based on
the results by Ogura, as depicted in Scheme 3.

The carbonyl reduction of 6 with DIBAL-H in the presence of ZnCly in THF at -90 °C#) took place highly
diastereoselectively to give a 96:4 separable diastereomeric mixture of a hydroxy suifoxide 7 (66% overall yield
from 3). In order to avoid the rearrangement occurring between the hydroxy group and the sulfide moiety in 7,
the hydroxy group in 7 was protected as an acetate 8 (Ac2O, DMAP). The acetate 8 was subjected to sulfinyl
reduction by using Nal and (CF3CO)20 in acetone, followed by removal of the protecting groups to afford a
hydroxy sulfide 9 in 77% overall yield from 8. Usual Horner-Emmons-Wardsworth reaction of 9 with
trimethyl phosphonoacetate (NaH in THF) furnished an E-olefinic ester 10 ( 64% yield) together with its Z-
isomer (27% yield).

Completion of the sequence requires only the epoxy ring formation. The formation of the sulfonium salt
from 10 under the standard conditions (Me30+-BF4" in CH2Cl2) was quite siow probably due to the sterical
reason. However, the reaction of 10 with Me3O*BF4™ in nitromethane as the solvent proceeded smoothly at 0
°C for 0.5 h to give the sulfonium salt, which, after evaporation of the solvent, was treated with sodium
methoxide in methanol, furnishing enantiomerically pure JH II (1) in 55% yield ((a]pZ +15.1 (c 1.47, MeOH),
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litD ([a)p4 +17.6 (¢ 0.59, MeOH)}. The 'H NMR spectrum of the material obtained here is accord with the
reported values for JH IT and shows to be diastereomerically pure.10)  Consequently, the stercostructure of the
dialkylated keto sulfoxide 6 is determined as shown in Scheme 3.
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a) NaH, Et, DMF, . b) LDA, THF and then 5. ¢) NaH, Mel, DMF, it. d) DIBAL-H,
ZnCly, THF, -90°C. ¢) Ac0, DMAP, CH,Cly. ) (i) Nal, (CF5C0);0, acetone; (i) LAH;
(iiii) pyridinium p-tolucnesulfonate, acctone.  g) (McO),POCHC0;Me, NaH, THF, 1.,

h) (i) Me3O*+BF4~ MeNO2, 0 °C; (ii) McONa, MeOH.

In order to determine directly the optical purity of JH II, we examined several methods including NMR
technique as well as chiral stationary phase HPLC using (+)-JHIL.1D) We found that only the NMR technique
(600 MHz) using the Pirkle's chiral solvating reagent,12) 2,2,2-trifluoro- 1-(9-anthryl)-ethanol, could be applied
to the case of JH I1.13.14) In the presence of the chiral (S)-(-)-reagent, two sets of the epoxy ring proton signals
(dd, J=6.87, 5.60 Hz) were perfectly scparated each other (A3=0.034 ppm). By using this method, the optical
purity of the material synthesized here could be determined to be 100% e.c.

In summary, it has been demonstrated that the diastereoselective alkylation and carbonyl reduction of a
chiral B-keto sulfoxide and the subsequent claboration of the resulting chiral B-hydroxy sulfoxide offer an casy
access to enantiomerically pure JH II.
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