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ABSTRACT: Recently we have developed a method for catalytic regioselective synthesis of 2-

substituted and 3-substituted benzofurans starting from phenols. The choice of reacting partner, 

olefin versus α,β−unsaturated acid, is critical to dictate the isomeric product formation. Instances 

are known where these olefinic partners did not complement each other and yield a similar 

outcome. In the current work, we have addressed this paradox with emphasis on (a) the origin of 

orthogonal selectivity, and (b) the key requirements to expect complementary behavior. 

Experimental and computational studies provided important mechanistic insights. Electrostatic 

compatibility during migratory insertion and the positioning of the carboxylic acid moiety in 

catalytic steps are found to exert a paramount impact in determining the regioselectivity. The 

study offers a predictable single component tuning tool to control the regioselectivity. 
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INTRODUCTION 

Achieving site selective transformation on the reactive functional group is a key goal in organic 

synthetic chemistry.1 Preferential formation of an isomer in a competitive environment are 

largely facilitated by the manipulation of the reaction parameters. In this context, asymmetric 

synthesis, chemoselective functionalizations, regioselective transformations are explored in great 

details.2-5 In comparison to the traditional chemical approach, catalytic routes offer a 

significantly broader scope of calibration.6-10 For instance, application of regioselective 

functionalization of the unsaturated chemical bonds has largely attributed by the development of 

transition metal catalysts.1, 11-17 The installation of efficient ligands further expands the scope of 

fine tuning the selectivity.18-22 Despite superior selectivity, catalyst dependent selective 

functionalization techniques are transformation specific and offers a narrow scope of 

generalization. Furthermore, expensive customized ligands make the scalability less affordable. 

As an alternative significant amount of effort has been invested to utilize the abundant, 

economical olefins as the key component to control the regioselectivity in the product.23-30 In this 

regard our group has demonstrated regioselective synthesis of heterocyclic cores from olefinic 

feedstock where the regioselectivity is largely governed by the choice of the olefinic partner.23, 27  

Heterocyclic units with proper positioning of the substituents are extremely important in 

the development of functional small molecules and in diversity-oriented synthesis. Benzofurans 

are one of such prevalent structural motifs found in natural products, pharmaceuticals, 

agrochemicals and organic materials.31-39 Over the last two decades several synthetic methods 

have been developed.40-50 Generally, heteroannulation of alkynylated and olefinated phenols or 

arenes are employed to generate functionalized benzofurans.51-59 Coupling reactions with 

appropriate prefunctionalized substrates are also known to be effective.60-62 Recently direct 
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conversion of simple phenols to benzofurans has been explored.23, 27-28, 63-68 Our group has 

demonstrated the formation of 2-substituted benzofurans from phenols by using abundant 

olefinic feedstock.23 An orthogonal route for 3-substituted benzofuran synthesis was also 

developed (Scheme 1).27 Notably, such regioselective synthesis from simple phenol derivatives is 

often accompanied by a strained metallacycle formation compounded by a difficult reductive 

elimination as well as a competitive oxidative product formation.69-74 Our methods, however, 

offered excellent yield and selectivity. It was observed that the orthogonal selectivity largely 

dependents on the choice of the olefinic partners and thus offering a handle to tune a single 

reactant to adjust the selectivity.  

 

Scheme 1. Orthogonal selectivity in benzofuran synthesis 

A similar mode of orthogonal selectivity was obtained for 2- and 3-substituted indole 

with aniline as the coupling partner.24, 26 Interestingly, in Fujiwara-Moritani reaction, 

replacement of olefins by α, β−unsaturated acids generated isomeric branched olefinated 

products, a challenging target for unactivated coupling partners.75-76 Further, simultaneous 

functionalizations at 2- and 3-positions of benzofuran were also realized.28 Rovis and coworkers 

reported similar selectivity inversion in the synthesis of 2- and 3-substituted pyridines (Scheme 

2).29-30  

Seemingly, the selection of olefinic partners is critical to the selectivity inversion and can 

be implemented for the generation of diverse core structures.77-82 Although electronically olefins 

and α, β−unsaturated acids are different, instances are known where one acts as an alternative to 
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other.25, 80, 83-84 Therefore understanding the mechanistic intricacies of olefin dependent 

regioselective transformation is essential to gain a predictable control. 

In the current work, we have reasoned the essential characteristics of olefin controlled 

regioselective synthesis of benzofuran heterocycle with emphasis on (a) the origin of orthogonal 

selectivity, and (b) the essential requirement for such complementary behavior. Experimental and 

computational studies are employed to develop deeper understanding and offer predictable 

control of regioselectivity.  

 

Scheme 2. Overview and key mechanistic steps for benzofuran synthesis. 
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The key mechanistic features in the formation of benzofuran from phenol can be 

considered as follows; palladium acetate can first combine with 1,10-phen (L2) to form the active 

catalyst (1). An ortho palladation of phenol in the catalyst-substrate complex can give rise to 

intermediates 2 and 3. Subsequent olefin uptake can result in a π-adduct 4 which upon migratory 

insertion can generate intermediate 5 or 6 depending on the nature of the olefins. Finally, a 

combination of β-hydride elimination, cyclization and aromatization completes the regioselective 

synthesis of benzofuran. We intend to probe the origin of the mode of migratory insertion 

between phenol and olefin in 4 as it can be exploited toward harnessing the product 

regioselectivity. 

Formation of Palladated Intermediate: 

In presence of 1,10-phen ligand, Pd(OAc)2 is likely to form the [Pd(phen)]II species as the active 

catalyst (1). The proposition of organometallic intermediates in the catalytic cycle is verified by 

trapping the active catalysts with iodide, in the form of Pd(1,10-phen)I2 (Scheme 3i). The 

isolated complex is catalytically active, yet kinetically sluggish due to its stability and thus 

requires elevated reaction temperature. The active catalyst (1) once formed, trends to interact 

with phenol which is likely to go through a Pd−O or Pd−C(ortho) coordination. The formation of 

later (Scheme 2; 2 or 3) is confirmed by inserting it to the nitrilic unsaturation of acetonitrile in a 

square planar complex (Scheme 3i). The coordinating nature of the nitrile group largely 

attributes to the stability of the complex which is likely to resemble the olefin insertion 

intermediate (5 or 6) of the catalytic cycle. In addition, control experiments suggest that the 

ortho-styrenyl phenol can cyclize to benzofuran whereas vinyl phenyl ether does not (Scheme 

3ii).23 Further, failure of sodium phenoxide as a substrate indicates the Pd−C(ortho) species as a 

favorable reactive intermediate (Scheme 3ii).23 Moreover, Pd−O connectivity, if formed, can 
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 6

switch to Pd−C(ortho) under the reaction condition.85 These observations clearly indicate the 

intermediacy of an ortho-palladated species. Arguably phenol is more prone to phenoxide 

formation, yet softer nature of ortho-carbon over phenolic oxygen can provide a better anchoring 

for palladium. The failure of the phenoxide is largely attributed by the hard-soft mismatch 

among the phenoxide and palladium center. 

 
a
 reactions were done under respective standard conditions 

Scheme 3. (i) Detection of intermediates (ii) substrate dependent control experiments 

DFT calculations were performed to compare the energetics of Pd−C (ortho) and Pd−O 

bond formation. Calculations suggest that the active catalyst (1,10-Phen)Pd(OAc)2 (1) is likely to 

be formed from Pd(OAc)2 and 1,10-phen (Figure 1).85-86  As shown in path A in Figure 1, the Pd-

bound acetate abstracts the phenolic proton with a concomitant formation of the 

Pd−C(ortho) bond (2) via transition state TS(1-2) with a barrier of 8 kcal/mol. On the other hand, 

the cleavage of ortho C−H bond (from 2 to 3) involves a higher barrier of 14 kcal/mol (TS(2-3)). 

Subsequent migratory insertion of styrene to the Pd−C(ortho) bond of 3 via TS(4-5) leads to the 
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 7

formation of ortho-olefinated intermediate (5) with a barrier of 14 kcal/mol. The formation of 5 

is found to be exoergic by 5 kcal/mol and is also characterized experimentally. Alternatively, in 

path B (Pd−O bond formation) a similar deprotonation of phenol by acetate is a barrierless 

process forming an intermediate a via TS(1-a). Despite this initial energetic advantage, the 

migratory insertion of styrene to form b is found to be highly unfavorable by 30 kcal/mol. 

Moreover, the generation of intermediate b is endoergic by 4 kcal/mol. The computed kinetic and 

thermodynamic features suggest the involvement of an ortho-aryl C-olefinated phenol (path A) 

over O-olefination (path B), which is in coherence with the experimental observations.  

 

Figure 1. Gibbs free energy (kcal/mol) profile for the formation of intermediate 5 at the 

SMD(DCE) /B3LYP-D3/def2-TZVP//B3LYP/6-31G**,LanL2DZ(Pd). 

 

Page 7 of 22

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 8

Differential Insertion of Olefin: 

Once the palladium phenol is formed, it reacts with the olefinic partner forming the 5 or 6, the 

key intermediate to harness regioselective product formation. Hammett analysis on the phenol 

system, with a series of diverse substituents, suggests the formation of negative charge density. 

The reaction with electron withdrawing groups are found to be more facile as it favors the 

stabilizing the negative charge density and palladation (Scheme 4i). A similar substituent effect is 

observed for 3-substituted benzofuran synthesis (Scheme 4ii).  

 

Scheme 4. Hammett analysis for the reaction of phenol with (i) styrene (ii) cinnamic acid 
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 9

Hammett analysis on the olefinic partner suggests the formation of partial positive charge 

density on the system (Scheme 5), which is stabilized by the presence of electron donating 

groups. However, unlike the styrenyl systems, electron deficient cinnamic acids are consumed 

without the formation of 3-substituted benzofurans.85 Such an observation can be rationalized by 

the facile decarboxylation of electron deficient cinnamic acids prior to the binding of Pd besides 

its reduced metal binding ability.87-89 

O

O2N

R

COOH
R

O

OH

NO2

+

Hammett Analysis of Styrene

(1:2)

R
R

O2N

OH

NO2

+

Hammett Analysis of Cinnamic Acid

(1:3)

(i)

(ii)

standard condition

yield 48-75%

standard condition

Groups (R) kobs

OMe

Me

F

Cl

CN

0.127

0.098

0.081

0.067

0.029

0.027NO2

H 0.083 (k0)

Groups (R) kobs

OMe

OEt

Me

F

Cl

0.093

0.089

0.085

0.081

0.071

H 0.039 (k0)

 

Scheme 5. Hammett analysis for the reaction of (i) styrene (ii) cinnamic acid 

Although both the olefinic partners show the signature of the partial positive charge 

accumulation, yet the distribution of charge cannot be concluded from the Hammett analysis. 
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 10

The relative distribution of the computed positive charge on the olefinic carbons (C1 and C2; 

Figure 2) is found to be different for styrene and cinnamic acid. Relatively more positive charge 

on the C2 carbon in the case of styrene and that on C1 carbon of cinnamic acid seem more likely. 

Difference in polarization of the olefinic moiety can result in different migratory insertion and 

regioselectivity. Notably, a greater slope in Hammett plot for styrene over cinnamic acid aligns 

with proposed partial positive charge formation at C1 for styrene and C2 for cinnamic acid.  

In particular, the DFT calculations90 on the regio-controlling migratory insertion step 

provided valuable insights. Different possibilities of the regio-controlling transition states for 

both styrene (S) and cinnamic acid (CA) are considered.85 The calculations suggest that the 

transition state (TS) for the nucleophilic addition at C2 carbon of styrene (SC2) is 2.2 kcal/mol 

lower than the addition at C1 (SC1) as shown in Figure 2. On the other hand, the TS for the 

nucleophilic addition at C1 carbon of cinnamic acid (CAC1) is 5.7 kcal/mol lower than the 

addition at C2 carbon (CAC2).  
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 11

 

Figure 2. Olefin binding to ortho-palladated phenol and optimized TS geometries of the 

migratory insertion step, TS(4-5). ∆∆G‡ (kcal/mol) are in parenthesis. L1=SMD(DCE)/B3LYP-

D3/def2-TZVP//B3LYP/6-31G**,LanL2DZ(Pd) and L2=SMD(DCE)/M06/6-

31+G**,SDD(Pd)//B3LYP/6-31G**,LanL2DZ(Pd). 

Additional distortion-interaction analysis on these TSs helped us understand the origin of 

the computed regioselectivity.49, 91-92 Higher interaction energy between styrene and ortho-

palladated phenol in SC2 renders C2 addition more favorable in styrene whereas a relatively 

lower distortion in both the reacting partners (cinnamic acid and ortho-palladated phenol) in 

CAC1 favors addition at C1 carbon in the case of cinnamic acid. 85  In the case of styrene, the 

difference in Gibbs free energy between the regiocontrolling TSs is found to arise due to higher 

Page 11 of 22

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 12

interaction energies in the most favored TS geometry that corresponds to the major isomer. 

However, in the case of cinnamic acid, the distortion energy in the TS leading to the major 

product is lower, suggesting a prominent role of distortion in regioselectivity (Figure 2). 

Impact of Decarboxylation: 

Although it is evident that distinct relative charge distribution on olefin is the key to differential 

regioselective insertion, the decarboxylation of cinnamic acid plays a crucial role to maintain 

such orthogonality. While studying the interaction of the ortho-olefinated phenol (Scheme 6i) 

with palladium cis olefin from a cis-trans mixture of 2-propenyl phenol is found to be consumed 

faster than the trans isomer. The interaction of olefinated phenol with palladium can also be 

observed based on the change of the  UV-Vis signal of substrate.85 Analogous experiments on 

cinnamic acid revealed that the decarboxylation is a critical step. 4-methyl cinnamic acid when 

converted to cinnamate and treated under the standard condition, a mixture of 2- and 3-

substituted benzofuran is obtained unlike the parent cinnamic acid that exclusively gave 3-

substituted benzofuran (Scheme 6ii). In addition, efficient decarboxylation triggers the formation 

of styrene and 2-substituted product from cinnamic acid.85  Presumably, moderate 

decarboxylation rate with catalytic Cu-phen system over other decarboxylative condition 

reinforced the necessary step sequence. Positioning of decarboxylation following the olefination 

step is the key requirement for the selectivity. Retaining such step sequence ensured the 

complementary behavior of olefin and α, β -unsaturated acids.82, 93-95 
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Scheme 6. (i) NMR study of olefin-Pd interaction (ii) Role of Decarboxylation 

Kinetics of the reaction: 

During the kinetic analysis, unlike styrene, all other components are found to influence the 

overall yield of the reaction, but not the regioselectivity (Scheme 7i).85 A similar outcome is also 

observed for cinnamic acid. Kinetically, a first order rate dependency is noted for palladium 

under both the conditions (Scheme 7ii).27 The reaction followed a first order kinetics with phenol 

and a negative order kinetics with styrene.23  Isotope labeling experiment with d2(C2)-4-

methoxystyrene shows a product partitioning of 1.27 (PH/PD) whereas 4-methoxystyrene is 

found to be more reactive than d1(C1)-4-methoxystyrene  [PH/PD = 2.1]. A value of 1.84 (kH/kD) 

was observed for the ortho C−H bond cleavage of phenol.23 Such an observation eliminates the 

possibility of olefinic and ortho C−H bond cleavage in the rate determining step (RDS).96 It is 
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likely that a steady state equilibrium is maintained among the intermediates with no distinct rate 

limiting step.85 

O
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+
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OMe OMe

D

D

+
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standard condition
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O
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O2N H(D)
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O
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O2N
D
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(1:2)

(1:1)
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Order = 0.96 1.0

(i)

+

(1:2)

standard condition

OH

NO2

Role of Components

O

O2N

(ii)

 

Scheme 7. (i) Role of different components (ii) determination of order, and KIE studies with 

deuterated olefins (iii) and (iv). 
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CONCLUSIONS: 

We have rationalized how the choice of olefinic coupling partner dictates the 

regioselective synthesis of 2- and 3-substituted benzofurans starting from a simple phenol 

precursor. The change in the fashion of olefin insertion upon moving from styrenyl to 

cinnamoyl system is largely responsible for the regioiselectivity. Although both the 

olefins develop a partial positive charge during the course of the reaction, their relative 

distributions are different and thus the mode of migration. Such distinctions are 

maintained only when insertion of cinnamoyl group occurs prior to decarboxylation. A 

change in such step sequence leads to the loss of regioselectivity. Thus, under a facile 

decarboxylative condition orthogonal behaviour is compromised and both the olefins lead 

to similar regioisomeric products. Therefore, maintaining migratory insertion followed by 

decarboxylation step is the key requirement for an olefin dependent regioselective 

synthesis of benzofurans.  
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