

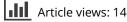
Organic Preparations and Procedures International

ISSN: 0030-4948 (Print) 1945-5453 (Online) Journal homepage: http://www.tandfonline.com/loi/uopp20

SYNTHESIS OF 7-DESOXY-8-ALLYLCOUMARINS

Raghao S. Mali , Ashok S. Walture & Kantipudi N. Babu

To cite this article: Raghao S. Mali , Ashok S. Walture & Kantipudi N. Babu (1996) SYNTHESIS OF 7-DESOXY-8-ALLYLCOUMARINS, Organic Preparations and Procedures International, 28:2, 217-221, DOI: 10.1080/00304949609356525

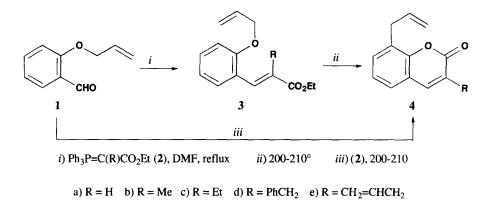

To link to this article: <u>http://dx.doi.org/10.1080/00304949609356525</u>

4	L	1

Published online: 18 Feb 2009.

Submit your article to this journal

View related articles 🗹


Citing articles: 1 View citing articles 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=uopp20

SYNTHESIS OF 7-DESOXY-8-ALLYLCOUMARINS

Submitted by (02/03/95) Garware Research Centre, Department of Chemistry University of Poona, Ganeshkhind, Pune-411 007, INDIA

8-Allylcoumarins constitute an important class of naturally occurring coumarins.¹ Although various methods have been reported for their synthesis, most of them require preformed 7-hydroxy-coumarins. Thus, 7-hydroxycoumarins on allylation followed by Claisen rearrangment provide 8-allyl-7-hydroxycoumarins either exclusively or along with some minor amounts of other products.^{1,3} Because of this difficulty, the synthesis of 8-allylcoumarins unoxygenated at C₇-position has not been reported so far. We report herein a convenient synthesis of 8-allylcoumarin (**4a**) and 3-substituted 8-allylcoumarins (**4b-e**) which do not have oxygen function at C₇-position.

The starting compound in our approach is 2-allyloxybenzaldehyde (1). Although 1 has been reported in the literature,⁴⁷ most of the known methods require high temperature and long reaction time. We have developed a simple procedure for its synthesis from salicylaldehyde. Thus, stirring a solution of salicylaldehyde and allyl bromide in N,N-dimethylformamide at room temperature for 2 hrs, in the presence of anhydrous potassium carbonate provided 2-allyloxybenzaldehyde (1) in 95% yield. When 1 was reacted with phosphorane (2a) at 205° for 3 hrs 8-allylcoumarin (4a) was obtained in 52% yield. Similarly reaction of 1 with phosphoranes (2b-e)^{8,10} gave 3-substituted 8-allylcoumarins (4b-e). It is envisaged that conversion of 1 into 4a-e involves initial Wittig reaction of 1 with 2a-e to give 3a-e which then underwent an *ortho* Claisen rearrangement followed by thermal isomerization and cyclization to provide 4a-e. To check the feasibility of this process, 2-allyloxybenzaldehyde (1) was reacted with phosphorane (2a) in N,N-dimethylformamide at room temperature to afford the E-ester 3a as a thick oil in 77% yield. Under similar conditions, reaction of 1 with 2b-e did not give the desired products 3b-e in good yields; however, at 165° for 3-6 hrs the E-esters 3b-e could be obtained in 46-63% yield. The E-stereochemistry of esters (3a-e) was established on the basis of their ¹H NMR

OPPI BRIEFS

spectral data. The olefinic α - and β -protons in **3a** appeared as doublets (J = 16 Hz) at 6.8 and 8.4 δ , respectively. The olefinic β -protons in compounds **3b-e** appeared as singlets at about 8.2 δ . The position of β -protons in **3a-e** are closer to the calculated¹¹ values of β -protons in the E-isomers of **3a-e**. This observation coupled with the magnitude of coupling constant (J = 16 Hz) of the olefinic protons in **3a** thus indicate that the esters **3a-e** must be E-isomers. The esters **3a-e** on heating at 200-210° for 2-8 hrs, (monitored by TLC) were smoothly converted into 8-allylcoumarins (**3a-e**).

Cmpd	Yield (%)	mp. (°C)	IR (C=O) (cm ⁻¹)	¹ H NMR (δ)	Elemental A (Foun C	•	Time (hrs)
3 a	77		1720	1.34 (3H, t, J = 7.5 Hz, CH ₂ CH ₃), 4.4 (2H, q, J = 7.5 Hz, CH ₂ CH ₃), 4.80 (2H, brd, J = 5 Hz, OCH ₂) 5.40-5.77 (2H m, CH=CH ₂), 6.08-6.57 (1H, m, CH=CH ₂), 7.08-7.90 (4H, m, ArH), 8.40 (1H, d, J = 16 Hz, CH=CH-COO).	72.39 (72.37)	6.94 (6.92)	14
3b	63		1703	1.34 (3H, t, J = 7.5 Hz, CH ₂ CH ₃), 2.08 (3H, bs, HC=C-CH ₃), 4.40 (2H, q J = 7.5 Hz, CH ₂ CH ₃) 4.65-4.90 (2H, m, OCH ₂) 5.37-5.77 (2H, m CH=CH ₂), 6.05-6.51 (1H, m, CH=CH ₂), 7.08-7.91 (4H, m, ArH), 8.20 (1H, bs, CH=C-).	73.14 (72.92)	7.37 (7.23)	6
3c	46		1706	1.14 (3H, t, J = 7.5 Hz, CH ₂ CH ₃), 1.34 (3H, t, J = 7.5 Hz, OCH ₂ CH ₃), 2.44 (2H, q, J = 7.5 Hz, C-CH ₂ CH ₃), 4.42 (2H, q, J = 7.5 Hz, OCH ₂ CH ₃), 4.71 (2H, brd, J = 5 Hz, OCH ₂), 5.37-5.74 (2H, m, CH=CH ₂), 6.05-6.51 (1H, m, CH=CH ₂), 7.08-7.68 (4H, m, ArH), 8.14 (1H, s, CH=C–).	73.82 (73.74)	7.74 (7.82)	4
3d	57		1707	1.22 (3H, t, J = 7.5 Hz, CH ₂ CH ₃), 4.0 (2H, s, CH ₂ Ph), 4.34 (2H, q, J =7.5 Hz, CH ₂ CH ₃), 4.71-4.91 (2H, m, OCH ₂), 5.40-5.77 (2H, m, CH=CH ₂), 6.05-6.54 (1H, m, CH=CH ₂), 7.08-7.91 (9H, m, ArH) 8.42 (1H, s, CH=C-).	78.23 (78.42)	6.88 (7.05)	7.5

TABLE 1. Yield, mp, Spectral and Analytical Data of 3 and 4

OPPI BRIEFS

Time

(hrs)

6

3

6

4

8

7

Cmpd	Yield (%)	mp. (°C)	IR (C=O) (cm ⁻¹)	¹ H NMR (δ)	Elemental Analysis (Found)	
			. ,		C	Н
3 e	64		1720	1.37 (3H, t, J = 7.5 Hz, CH ₂ CH ₃), 3.30 (2H, brd, J = 5 Hz, C-CH ₂), 4.42 (2H, q, J = 7.5 Hz, OCH ₂ CH ₃ 4.77-5.14 (2H, m, OCH ₂), 5.14-5.7 (4H, m, 2xCH=CH ₂), 6.00-6.51 (2) m, 2xCH=CH ₂), 7.22 (2H, t, J = 8 Hz, ArH), 7.48-7.71 (2H, m, ArH), 8.31 (1H, s, CH=C-).	7	7.40 (7.56)
4a	51	40-41	1709	3.74 (2H, brd, J = 5.5 Hz, Ar-CH ₂) 5.11-5.48 (2H, m, CH=CH ₂), 6.00-6.45 (1H, m, CH=CH ₂), 6.65 (1H, d, J = 10 Hz, C ₃ -H), 7.37-7.80 (3H, m, ArH), 8.00 (1H, d, J = 10 Hz, C ₄ -H).	, 77.40 (77.60)	5 41 (5.33)
4b	61	69-71	1709	2.22 (3H, 3, CH ₃), 3.71 (2H, brd, J = 6.0 Hz, Ar-CH ₂), 5.20-5.45 (2H, m, CH=CH ₂), 6.00-6.51 (1H, m, CH=CH ₂), 7.42-7.68 (3H, m, ArH), 7.80 (1H, 3, C ₄ -H).	77.98 (78.24)	6.04 (6 22)
4 c	41	68-70	1712	1.25 (3H, t, J = 7.7 Hz, CH ₂ CH ₃), 2.68 (2H, q, J = 7.7 Hz, CH ₂ CH ₃),	78.48 (78.45)	6.62 (6.81)

TABLE 1. Continued

4d

4e

(3H, m, ArH), 7.71 (1H, s, C₄-H). 82-84 1708 82.58 5.84 41 $3.71 (2H, brd, J = 6.0 Hz, Ar-CH_2),$ 4.02 (2H, s, CH₂Ph), 5.17-5.42 (82.46 (5.92)(2H, m, CH=CH₂), 6.00-6.51 (1H, m, CH=CH₂) 7.42-7.71 (9H, m, ArH and C_4 -H). 56 41-42 1733 3.42 (2H, brd, J = 6 Hz, C_3 -CH₂), 79.62 6.24 3.74 (2H, brd, J = 6.0 Hz,(79.53)(6.34)Ar-CH₂), 5.17-5.54 (4H, m, 2x CH=CH₂), 5.97-6.54 (2H, m, 2xCH=CH₂), 7.34-7.94 (4H, m, ArH and C_4 -H).

 $3.74 (2H, brd, J = 6.0 Hz, Ar- CH_2),$ 5.17-5.45 (2H, m, CH=CH₂), 6.02-6.51 (1H, m, CH=CH₂) 7.34-7.68

EXPERIMENTAL SECTION

All melting points are uncorrected. The IR spectra were recorded on a Perkin-Elmer FTIR-1615 spectrophotometer and ¹H NMR in CDCl₃ solutions on Jeol FX 90 Q instrument. Chemical shifts are expressed in δ (ppm) downfield from TMS as an internal standard and coupling constants in Hertz. Analyses were obtained using Hosli's rapid carbon-hydrogen analyser.

Preparation of 2-Allyloxybenzaldehyde (1).- A mixture of salicylaldehyde (6.1g, 5.3 mmol), anhydrous potassium carbonate (13.8 g, 100 mmol) and allyl bromide (14.52 g, 12 mmol) in N, N-dimethylformamide (20 mL) was stirred at room temperature for 2 hrs. It was poured in ice cold water (100:1), and extracted with ethyl acetate. The organic layer was washed with 2N NaOH (2x15 mL) and then with water. It was dried (Na₂SO₄) and evaporated to give 1 as a pale yellow liquid (7.7g, 95%). IR(neat): 1688 cm⁻¹, ¹H NMR: δ 4.85 (2H, brd, J = 5 Hz, OCH₂), 5.42-5.80 (2H, m, CH=CH₂), 6.08-6.57 (1H, m, CH=CH₂), 7.17-7.42 (2H, m, ArH), 7.85 (1H, dt, J = 8 and 2 Hz, ArH), 8.17 (1H, dd, J = 8 and 2 Hz, ArH), 10.81 (1H, s, CHO).

Anal. Calcd. for C₁₀H1₁₀O₂: C, 74.05; H, 6.22. Found: C, 73.89; H, 6.38

General Procedure for the Preparation of 8-Allylcoumarins (4a-e).- A mixture of 2-allyloxybenzaldehyde (0.8g, 5 mmol) and the phosphorane (6 mmol) was heated at 200-210° for 3-8 hrs (see Table). The residue obtained was chromatographed on silica gel using hexane-benzene (1:1) as an eluent to give **4a-d** (in case of **4e** the eluent was hexane) as white solids which, on recrystallization from hexane provided **4a-d** as pure crystalline products (for analytical and spectral data see Table).

General Procedure for the Preparation of (E)-Ethyl 2-Allyloxycinnamates (3a-e).- A mixture of phosphorane (5.1 mmol) and 2-allyloxybenzaldehyde (5 mmol) in N,N-dimethylformamide (15 mL), was refluxed for 6-7.5 hrs (in case of **3a** stirred at room temperature for 14 hrs). The reaction mixture was cooled, poured in water, and extracted with chloroform (2x25 mL). The chloroform layer was washed with water, dried (Na_2SO_4) and evaporated to give an oily product, which was chromatographed over silica gel using hexane-benzene (1:1) as an eluent to give the pure esters **3a-e** as thick liquids (for analytical and spectral data see Table).

General Procedure for the Conversion of (E)-Ethyl 2-Allyloxycinnamates (3a-e) into 8-Allylcoumarins (4a-e).- Ethyl-2-allyloxycinnamate (3a-e 2.5 mmol) was heated at 200-210°, under nitrogen atmosphere for 2-8 hrs (monitored by TLC). The residue obtained was chromatographed over silica gel using hexane-benzene (1:1) as an eluent to give a solid which on recrystallization from hexane provided coumarins 4a-e as pure crystalline products, which were identical (mp, TLC, IR and ¹H NMR) with authentic samples prepared above. 4a: heated for 6 hrs (82% yield), 4b: heated for 5.5 hrs (63%), 4c: heated for 2 hrs (89%), 4d: heated for 6 hrs (35%), 4e: heated for 8 hrs (47%).

Acknowledgement.- We thank Mr. A. P. Gadgil and Mrs. J. P. Chaudhari for analytical and spectral data. One of us (ASW) is grateful to UGC, New Delhi, for the award of a teacher fellowship.

REFERENCES

- 1. R. D. H. Murray, J. Mendez and S. A. Brown, *The Natural Coumarins, Occurrence, Chemistry and Biochemistry*, Wiley Interscience, New York, NY, 1982.
- 2. V. Satyanarayana, C. P. Rao, G. L. D. Krupadanam and G. Srimannarayana, Synth. Commun, 21,

OPPI BRIEFS

661 (1991).

- 3. A. Prashant, G. L. D. Krupadanam and G. Srimannarayana, Bull. Chem. Soc. Jpn, 65, 1191 (1992).
- 4. S. S. Mathur and S. Hans, J. Chem. Soc. Perkin Trans I, 2479 (1975).
- 5. S. Tomio, H. Yoshiyuki, K. Yoshitaka and To Kazuhiro, Bull. Chem. Soc. Jpn, 55, 2450 (1982).
- 6. B. L. Dale and C. L. Wendy, J. Org. Chem., 58, 2068 (1993).
- 7. M. Black, J. I. G. Cadogan, G. A. Cartwright, H. McNab and A. D. Macpherson, *Chem. Commun.*, 959 (1993).
- M. Kuchar, B. Kakac, O. Nemecek, E. Kraus and J. Holubeck, Coll. Czech. Chem. Commun., 38, 447 (1973).
- 9. R. S. Mali, S. G. Tilve, S. N. Yeola and A. R. Manekar, Heterocycles, 26, 121 (1987).
- 10. N. Britto, V. G. Gore, R. S. Mali and A. C. Ranade, Synth. Commun., 19, 1899 (1989).
- 11. E. Pretsch, T. Clerc, J. Seibl and W. Simon, Tabellen Zur Strukturaufklarung Organischer Verbindungen mit Spektrokopischen Methoden, Springer, Berlin, 1976.

EXPEDIENT SYNTHESES OF ESPINTANOL, *p*-METHOXYCARVACROL AND THYMOQUINOL DIMETHYL ETHER

Submitted by (07/08/95)

Björn C. Söderberg*, and Shari L. Fields[†]

Department of Chemistry, West Virginia University P. O. Box 6045, Morgantown, WV 26506-6045

A substantial number of oxygenated p-cymene derivatives have been isolated from a variety of plant sources especially from trees. The title compounds, for example, were first isolated from the spruce tree *Oxandra espintata* (espintanol),¹ from the incense-cedar heartwood *Libocedrus decurrens* (p-methoxycarvacrol)² and from *Eupatorium triplinere* (thymoquinol dimethylether).³ p-Cymene derivatives of this type were shown early on by Erdtman and Rennerfelt to exhibit varying degrees of toxicity toward wood-destroying fungi.⁴ In addition, espintanol has been shown to have antiparasitic activity against a number of strains of *Trypanosoma cruzi* and *Leishmania*, the latter responsible for