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Figure 1. Structure of some bioactive compounds.
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In this study, a new methodology for the one-pot synthesis of 4-aryl-1H-1,2,3-triazoles from aryl-
glyoxaldoxime semicarbazone is presented. 4-Aryl-1,2,3-triazoles were obtained in moderate to good
yields via sodium dithionite and O2, which are all efficient, safe and inexpensive reagents. This reaction
is more suitable for large-scale syntheses than those using hydrazoic acid, sodium azide, or organic
azides.

� 2013 Elsevier Ltd. All rights reserved.
1,2,3-Triazole is a significant class of nitrogen heterocycles1

which are widely used as pharmaceuticals and agrochemicals.
1,2,3-Triazole displays the broad spectrum of biological activities2

such as antibacterial (I, Cefatrizine, Fig. 1), herbicidal, fungicidal,
antiallergic, and anti-HIV properties. Compounds containing
1,2,3-triazoles have found industrial applications3 such as dyes,
corrosion inhibitors, and photostabilizers (II, Fig. 1). Moreover, 4-
aryl-1H-1,2,3-triazoles have been employed as human methionine
aminopeptidase (hMetAP2) and indoleamine 2,3-dioxygenase
(IDO) inhibitors, and are expected to become medicines to treat
cancers, AIDS, Alzheimer’s disease, tristimania, cataracts, and some
other serious diseases.4 For instance, Rufinamide5 (III, Fig. 1) is a
new CNS-active compound used in the treatment of epilepsy,
which is approved by the FDA and listed in the United States on
November 2008.

Because of the importance of this structural motif, there are a
variety of practical methods available for the preparation of
1,2,3-triazole. Among them, the Huisgen azide–alkyne dipolar
cycloaddition6 (AAC) is perhaps the most universally utilized
method for the synthesis.

In order to solve the drawbacks7 such as lack of regioselectivity
when utilizing unsymmetrical alkynes and a long reaction time,
the Huisgen dipolar cycloaddition of alkynes to organicazides had
been greatly developed in the following three aspects:
 (1) The AAC reaction takes place with the same dipolarophile

(mainly is terminal alkyne), but different 1,3-dipoles, for
example exploiting TSE-N3

7 (b-Tosylethylazide), TMS-N3
8a

(trimethylsilylazide), MeOPEG-N3
8b (poly(ethyleneglycol)-
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Table 1
Screening of the reaction conditionsa

N

N

NH
NH2

O

OH base,solve

2a

Na2S2O4

Dehydrating agent Oxidizing agent Base

1 — O2 in air NaHCO3

2 — O2 in air NaOH
3 — O2 in air Na2CO3

4 Na2S2O4 O2 in air NaHCO3

5 Na2S2O4 O2 in air NaHCO3

6 Na2S2O4 O2 in air NaHCO3

7 Na2S2O4 O2 in air NaHCO3

8 Na2S2O4 O2 in air NaHCO3
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supportedazide), azidomethyl pivalate, azidomethyl
morpholine-4-carboxylate, and azidomethyl N,N-diethylcar-
bamate8c to replace sodium azide and hydrazoic acid in
order to avoid jeopardizing the safety of large-scale synthe-
ses (Scheme 1, General Method A).

(2) The AAC reaction takes place with the same 1,3-dipole (com-
monly is sodium azide), but different dipolarophiles, such as
using b-bromostyrene,9a 1,1-dibromoalkenes,9b anti-3-aryl-
2, 3-dibromopropanoic acids,9c and nitrostyrene9d which
were more easily obtained than terminal alkyne (Scheme 1,
General Method B).

(3) The AAC takes place with different catalysts and different
ligands (including Pd-, Ru-, Cu-catalyzed (Cu0, Cu1+, Cu2+)
reaction and xantphos, dpephos)8,9 which were applied in
the foregoing methods to undergo the AAC reaction at room
temperature and improve regioselectivity as well as shorten
the reaction time.

Although great contribution have been made to the AAC reac-
tion, there are still several problems that organic azides are synthe-
sized from sodium azide8 which is a highly toxic, explosive
reagent,8d and metal catalysts, especially ligands9 as mentioned
above are expensive and not easy to prepare. So a general, simple,
and scalable method for the synthesis of 4-aryl-1H-1,2,3-triazoles
2

base,solvent, heat

3a

NH

NNNa2S2O4, O2

2.

nt, heat

3a

NH

NN, O2

Solvent Temperature (�C) Timeb Yieldc (%)

DMF 110 >5 h 20
DMF 110 >5 h 22
DMF 110 >5 h 21
DMF 110 0.5 h 65
DMSO/H2O 100 1 h 54
Toluene/H2O 100 >5 h NR
DMF/H2O 100 30 min 85
DMF/- 100 1 h 70



Table 1 (continued)

Dehydrating agent Oxidizing agent Base Solvent Temperature (�C) Timeb Yieldc (%)

9 Na2S2O4 O2 in air NaHCO3 DMF/H2Od 90 5 h 42
10 Na2S2O4 O2 in air NaHCO3 DMF/H2O 110 15 min 95
11 Na2S2O4 O2 in air NaHCO3 DMF/H2O 120 15 min 96
12 Na2S2O4 O2 in air — DMF/H2O 110 >5 h NR
13 Na2S2O4 O2 in air KHCO3 DMF/H2O 110 1.5 h 85
14 Na2S2O4 O2 in air NaOH DMF/H2O 110 30 min 87
15 Na2S2O4 O2 in air Na2CO3 DMF/H2O 110 1 h 82
16 Na2S2O4 -e NaHCO3 DMF 110 >5 h NR
17 Na2S2O4 Pure O2

f NaHCO3 DMF/- 110 25 min 80
18 Na2S2O4 Pure O2 NaHCO3 DMF/H2O 110 10 min 98

a Reactions were carried out with 0.25 mmol of 2a (1 equiv), Na2S2O4 (2 equiv), base (4 equiv), and solvent (5 mL).
b Complete reaction time of substrates.
c Isolated yield by column chromatography.
d DMF was the main solvent and the addition water was used to accelerate basic hydrolysis after the Na2S2O4 was added after 5 min.
e The reactions was taken in the Schlenk tube to get rid of O2.
f 1 Atm pure O2.
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is still not available. Herein, we report our findings for the one-pot
synthesis of 4-aryl-1H-1,2,3-triazoles from arylglyoxaldoxime
semicarbazone.
We observed the formation of 4-phenyl-1H-1,2,3-triazole (3a)
(Scheme 2) in the process of synthetic study toward 6-phenyl-
1,2,4-triazin-3(2H)-one (3a0). When sodium dithionite was chosen
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as the deprotection agent of the aldoxime, it did not produce the
desired products 3a0, instead of a pure white solid characterized
as 3a by 1H NMR, 13C NMR, MS, and melting point.10 With the
unexpected and unpredictable result, our investigation began with
an effort to optimize reaction conditions for the one-pot synthesis
of 4-aryl-1H-1,2,3-triazoles.

For exploratory experiments, the unsubstituted aryl methyl ke-
tones 1a were used as a representative substrate. Firstly, the inter-
mediate 2a was prepared as per the literature procedures reported
by Trust.11 Then various bases, temperatures and solvents were
used for screening the best condition of cycloaddition reactions.
Progress of the reaction was monitored by TLC and the results
are shown in Table 1.

At first, test experiments were carried out with different bases.
It can be found that less product was obtained in low yield (Table 1,
entries 1–3). The corresponding product could be obtained in a
higher yield because of Na2S2O4’s participation (Table 1, entry 4).
Through an examination of the influence of solvents (Table 1, en-
tries 5–8), DMF and water were the best solvents and superior over
the other solvents in terms of both product yield and reaction time
(Table 1, entry 7), where DMF was the main solvent and the addi-
tion of water was used to accelerate basic hydrolysis after the Na2-

S2O4 was added after 5 min. Encouraged by this result, we then
investigated the effect of the temperature on the model reaction.
It was pleasing to find that the desired product 3a was obtained
in a yield of 95% when the reaction was performed at 110 �C for
15 min (Table 1, entry 10).

Then a series of four bases was screened to find the best base for
the reaction (Table 1, entries 10 and 12–15). And the result showed
that NaHCO3 worked best. Finally, in order to confirm the role of
oxygen, the reaction was carried out in the absence of O2. It was
found that O2 was essential for the reaction (Table 1, entries
16–18). Thus, the optimized reaction condition for the one-pot
synthesis was Na2S2O4 (2 equiv), NaHCO3 (4 equiv) in DMF and
water under O2 gas atmosphere heated at 110 �C for 10 min.12

According to the end product, a plausible mechanism for the
formation of the products is shown in Scheme 3. Firstly, the isourea
4 was formed at 110 �C from the semicarbazide derivative 2 with
the urea-like structure (shown in dashed circle).13 The isourea
intermediate 4 is relatively stable due to the formation of the
conjugated system (shown in dashed circle). Under the oxida-
Table 2
One-pot synthesis of various substances

R
NaHCO3, DMF/H2O,

110oC

Na2S2O4, O2

R

N

N
OH

NH

O NH2

NH

NN

2 3

Entry Substance(R-) Product Timeb min Yieldc (%)

1 Ph 3a 10 98
2 4-Chlorophenyl 3b 12 88
3 4-Nitrophenyl 3c 15 81
4 4-Fluorophenyl 3d 10 85
5 p-Tolyl 3e 15 83
6 4-Cyanphenyl 3f 15 79
7 3-Chlorophenyl 3g 10 80
8 2-Fluorophenyl 3h 14 69
9 o-Tolyl 3i 10 88
10 3,5-Bis(trifluoromethyl)phenyl 3j 10 87
11 2-Naphthyl 3k 13 85
12 2-Furan 3l 20 79

b Complete reaction time of Substrates.
c Isolated yield by column chromatography.
tion–reduction of O2 and Na2S2O4, the imine onium ion 6 was syn-
thesized from the aldoxime, followed by the cyclization reaction
which did not obey the Baldwin’s rule.14 Here, Na2S2O4 firstly re-
acted with O2, and then converted the oxime hydroxyl group into
a reactive leaving group, facilitating the breaking of the nitro-
gen–oxygen bond to form an imine onium cation. And decomposed
product NaHSO4 will neutralize NaHCO3 to produce water that
contributed to basic hydrolysis. Therefore the reaction still can
proceed without the addition of water (Table 1, entries 4 and 8,
17), and just the reaction time was prolonged. The generated inter-
mediate 7 was hydrolyzed under alkaline conditions to obtain 30

when adding the addition of water to accelerate basic hydrolysis.
The end-product 3 is more stable than 30 which is the multitudi-
nous form.

After developing the optimized reaction condition, the scope of
this methodology was explored. Thus a comprehensive number of
functional groups were compatible with this reaction to prepare
the corresponding 4-substituted aryl-1H-1,2,3-triazole. The results
are shown in Table 2.

As shown in Table 2, various substrates with both electron
donating and withdrawing groups that patterned on the benzene
ring gave the corresponding products in good to excellent yields
(Table 2, entries 2–12). Particularly, compound 3l containing het-
eroaromatic rings also gave its corresponding products with a good
yield (Table 2, entry 12). Through the above comparison yields, it
can be seen that the method has well tolerated for different aro-
matic rings

In summary, we have developed an advanced methodology for
the one-pot synthesis of 4-substituted aryl-1H-1,2,3-triazole in
good to excellent yields. In addition, such products will be helpful
for the synthesis of natural products and bioactive molecules hav-
ing pharmaceutical importance. The bio-activity test of some com-
pounds is in progress.
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