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Abstract—The first general stereocontrolled approach to C-3 alkyl analogs of cocaine is described. The route utilized versatile
intermediates 2�-hydroxymethyl-3�-cyanotropane and 2�-hydroxymethyl-3�-cyanotropane. © 2001 Elsevier Science Ltd. All
rights reserved.

No specific treatment exists for cocaine addiction or
overdose.1 Cocaine acts by blocking a neurotransmitter
reuptake transporter that normally removes dopamine
from a synapse in the reward pathway of the central
nervous system.2 Cocaine amplifies neurotransmission
in this pathway resulting in reinforcement of antecedent
behavior (i.e. cocaine self-administration). Small
molecule antagonists of cocaine have proven elusive,
perhaps because of the difficulties inherent in blocking
a blocker. In the course of exploring novel transition-
state analogs through which to elicit catalytic antibod-
ies that hydrolyze cocaine at its benzoyl ester,3 we
required access to the C-3 analog of cocaine 1. Herein,
we report the first general approach to the synthesis
of a C-3 alkyl analog of cocaine, achieved through
preparation of 2�-hydroxymethyl-3�-cyanotropane 2
(Scheme 1).

Myriad cocaine analogs have been synthesized for
structure–activity studies,5 but no C-3 alkyl analogs are
among them. Carbon�carbon bond formation at C-3 is
sterically hindered and the relative stereochemistry at
C-2 and C-3 is difficult to control. The only reported
cocaine analogs with a carbon substituent at C-3 are
the ‘WIN’ series5 with a phenyl group or other aro-
matic moiety at this position. Most WIN compounds
are synthesized through Michael addition of arylmag-
nesium bromides to dehydroecgonine methyl ester,6 but
our attempts to expand this method to alkyl nucle-
ophiles were unsuccessful.

As a simple, alternative approach to C-3 analogs we
considered SN2 substitution of the mesylate of a previ-
ously reported alloecgonine methyl ester 3.7 Literature
precedents4 and our own initial trials indicated an
unavoidable elimination of the mesylate of 3 if the
methyl ester was unprotected. Thus, alloecgonine
methyl ester 3 was reduced to diol 4 by LiAlH4 in 87%
yield, and the primary alcohol of 4 selectively protected
with t-butyldimethylsilyl chloride to provide 5 in 91%
yield. Mesylation of alcohol 5 proceeded in 88% yield
and reflux of 6 in EtOH/H2O in the presence of KCN
provided the bisaxial �-nitrile 8 in 74% yield. Retention
of configuration at C-3 of 8 was unexpected, but could
be attributed to the participation of the tropane nitro-
gen (intermediate 7). Fortunately, the �-nitrile epimer-
ized with NaNH2 to the desired �-isomer 2 in 83%
yield. The configuration of the two nitriles was clearly
established through the comparison of their 1H NMR
spectra with the corresponding isomers of cocaine. Spe-
cifically, the C-3 proton in 8 showed the same coupling
pattern and constants as allococaine (doublet at 2.90
ppm with a coupling constant J=5.3 Hz), whereas
the C-3 proton in 2 showed a pattern and coupling
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Scheme 1. Reagents and conditions : (i) LiAlH4/THF, 3 h; (ii) TBDMSCl/imidazole, CH2Cl2; (iii) MsCl/Et3N, CH2Cl2; (iv)
KCN/EtOH:H2O (10:3), reflux, 4 h; (v) NaNH2, C6H6, reflux, 24 h.

Scheme 2. Reagents and conditions : (i) PhCH2Li, ether, 3 h; (ii) t-Bu4NF, THF; (iii) (a) Swern oxidation, (b) NaClO2, i-BuOH,
H2O; (iv) CH2N2.

constants comparable to those of cocaine (a five
line 1:2:2:2:1 multiplet at 2.85 ppm with JH2�-H3�=
JH3�-H4�=6 Hz, JH3�-H4�=12 Hz).7,9

Nitrile 2 is readily transformed to C-3 alkyl analogs of
cocaine, and nitrile 8 provides the corresponding
analogs of allococaine. As an illustration, we trans-
formed 2 into the desired transposed-carbonyl analog
of cocaine 1. Thus, nitrile 2 was treated with an ethereal
solution of benzyl lithium (prepared from tribenzyltin
chloride with methyllithium)8 to yield ketone 9 in 73%
yield (Scheme 2). Acidic deprotection of the primary
hydroxyl group of 9, followed by two-step oxidation
(Swern and NaClO2) gave the acid 11 and methylation
with CH2N2 provided analog 1 (50% yield for two steps
from 10).

In conclusion, the versatile C-3 tropane nitriles 2 and 8
provide the first practical routes to C-3 alkyl analogs of
cocaine and allococaine, respectively. Binding studies of
analog 1 with our current anti-cocaine catalytic
antibodies3 and cocaine aptamers10 are in progress.
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