

Tetrahedron Letters 42 (2001) 6259-6261

TETRAHEDRON LETTERS

Synthesis of C-3 alkyl analogs of cocaine

Shi Xian Deng,* Dan Wen Huang and Donald W. Landry

Division of Clinical Pharmacology and Experimental Therapeutics, Department of Medicine, Columbia University, 630 West 168 Street, New York, NY 10032, USA

Received 9 May 2001; revised 10 July 2001; accepted 12 July 2001

Abstract—The first general stereocontrolled approach to C-3 alkyl analogs of cocaine is described. The route utilized versatile intermediates 2β -hydroxymethyl-3 α -cyanotropane and 2β -hydroxymethyl-3 β -cyanotropane. © 2001 Elsevier Science Ltd. All rights reserved.

No specific treatment exists for cocaine addiction or overdose.¹ Cocaine acts by blocking a neurotransmitter reuptake transporter that normally removes dopamine from a synapse in the reward pathway of the central nervous system.² Cocaine amplifies neurotransmission in this pathway resulting in reinforcement of antecedent behavior (i.e. cocaine self-administration). Small molecule antagonists of cocaine have proven elusive, perhaps because of the difficulties inherent in blocking a blocker. In the course of exploring novel transitionstate analogs through which to elicit catalytic antibodies that hydrolyze cocaine at its benzoyl ester,³ we required access to the C-3 analog of cocaine 1. Herein, we report the first general approach to the synthesis of a C-3 alkyl analog of cocaine, achieved through preparation of 2β-hydroxymethyl-3β-cyanotropane 2 (Scheme 1).

^{*} Corresponding author. Tel.: 212-305-1152; fax: 212-305-3475; e-mail: sd184@columbia.edu

Myriad cocaine analogs have been synthesized for structure–activity studies,⁵ but no C-3 alkyl analogs are among them. Carbon–carbon bond formation at C-3 is sterically hindered and the relative stereochemistry at C-2 and C-3 is difficult to control. The only reported cocaine analogs with a carbon substituent at C-3 are the 'WIN' series⁵ with a phenyl group or other aromatic moiety at this position. Most WIN compounds are synthesized through Michael addition of arylmagnesium bromides to dehydroecgonine methyl ester,⁶ but our attempts to expand this method to alkyl nucleophiles were unsuccessful.

As a simple, alternative approach to C-3 analogs we considered S_N2 substitution of the mesylate of a previously reported alloecgonine methyl ester 3.7 Literature precedents⁴ and our own initial trials indicated an unavoidable elimination of the mesulate of 3 if the methyl ester was unprotected. Thus, alloecgonine methyl ester 3 was reduced to diol 4 by LiAlH_4 in 87% yield, and the primary alcohol of 4 selectively protected with *t*-butyldimethylsilyl chloride to provide 5 in 91%yield. Mesylation of alcohol 5 proceeded in 88% yield and reflux of 6 in EtOH/H₂O in the presence of KCN provided the bisaxial α -nitrile 8 in 74% yield. Retention of configuration at C-3 of 8 was unexpected, but could be attributed to the participation of the tropane nitrogen (intermediate 7). Fortunately, the α -nitrile epimerized with NaNH₂ to the desired β -isomer 2 in 83% yield. The configuration of the two nitriles was clearly established through the comparison of their ¹H NMR spectra with the corresponding isomers of cocaine. Specifically, the C-3 proton in 8 showed the same coupling pattern and constants as allococaine (doublet at 2.90 ppm with a coupling constant J=5.3 Hz), whereas the C-3 proton in 2 showed a pattern and coupling

Scheme 1. Reagents and conditions: (i) LiAlH₄/THF, 3 h; (ii) TBDMSCl/imidazole, CH_2Cl_2 ; (iii) MsCl/Et₃N, CH_2Cl_2 ; (iv) KCN/EtOH:H₂O (10:3), reflux, 4 h; (v) NaNH₂, C₆H₆, reflux, 24 h.

Scheme 2. Reagents and conditions: (i) PhCH₂Li, ether, 3 h; (ii) t-Bu₄NF, THF; (iii) (a) Swern oxidation, (b) NaClO₂, *i*-BuOH, H₂O; (iv) CH₂N₂.

constants comparable to those of cocaine (a five line 1:2:2:2:1 multiplet at 2.85 ppm with $J_{\text{H2}\alpha-\text{H3}\alpha} = J_{\text{H3}\alpha-\text{H4}\alpha} = 6$ Hz, $J_{\text{H3}\alpha-\text{H4}\beta} = 12$ Hz).^{7,9}

Nitrile 2 is readily transformed to C-3 alkyl analogs of cocaine, and nitrile 8 provides the corresponding analogs of allococaine. As an illustration, we transformed 2 into the desired transposed-carbonyl analog of cocaine 1. Thus, nitrile 2 was treated with an ethereal solution of benzyl lithium (prepared from tribenzyltin chloride with methyllithium)⁸ to yield ketone 9 in 73% yield (Scheme 2). Acidic deprotection of the primary hydroxyl group of 9, followed by two-step oxidation (Swern and NaClO₂) gave the acid 11 and methylation with CH₂N₂ provided analog 1 (50% yield for two steps from 10).

In conclusion, the versatile C-3 tropane nitriles 2 and 8 provide the first practical routes to C-3 alkyl analogs of cocaine and allococaine, respectively. Binding studies of analog 1 with our current anti-cocaine catalytic antibodies³ and cocaine aptamers¹⁰ are in progress.

Acknowledgements

We thank Dr. Milan N. Stojanovic for helpful comments. Financial support was provided by the Counterdrug Technology Center of the Office of National Drug Control Policy.

References

- Hall, W. C.; Talbert, R. L.; Ereshefsky, L. Pharmacotherapy 1990, 10, 46.
- (a) Goeders, N. E.; Smith, J. E. Science 1983, 221, 773;
 (b) Kubar, M. J.; Zargin, M. A. J. Neuochem. 1975, 31, 251;
 (c) Kitty, J. E.; Lorang, D.; Amara, S. G. Science 1991, 254, 578.
- (a) Landry, D. W.; Zhao, K.; Yang, G.; Glickman, M.; Georgiadis, T. M. *Science* 1993, 259, 1899; (b) Yang, G.; Chun, J.; Arakawa-Uramoto, H.; Wang, X.; Gawinowicz, M. A.; Zhao, K.; Landry, D. W. J. Am. Chem. Soc. 1996, 118, 5881.
- Sakurai, M.; Wirsching, P.; Janda, K. D. Tetrahedron Lett. 1996, 37, 5479.
- (a) Chang, A.; Burges, J. P.; Carroll, F. I. J. Med. Chem. 1997, 40, 1247; (b) Lieske, S. F.; Yang, B.; Eldefrawi, M. E.; MacKerell, A. D.; Wright, J. J. Med. Chem. 1998, 41, 864; (c) Xu, L.; Kelkar, S. V.; Lomenzo, S. A.; Izenwasser, S.; Katz, J. L.; Kline, R. H.; Trudell, M. L. J. Med. Chem. 1997, 40, 858; (d) Kozikowski, A. P.; Saiah, M. K.; Johnson, K. M.; Bergmann, J. S. J. Med. Chem. 1995, 38, 3086.
- Clarke, R. L.; Daum, S. J.; Gambino, A. J. J. Med. Chem. 1973, 16, 1260.
- Carroll, F. I.; Coleman, M. L.; Lewin, A. H. J. Org. Chem. 1982, 47, 13.
- Sisido, K.; Takeda, Y.; Kinagawa, Z. J. Am. Chem. Soc. 1960, 83, 538.
- Compound 8: mp: 73°C; ¹H NMR (CDCl₃, 300 MHz) δ: 3.95 (dd, 1H, J=2, 12 Hz), 3.70 (dd, 1H, J=3, 12 Hz), 3.35 (s, broad, 1H), 3.25 (s, broad, 1H), 2.90 (d, 1H,

J=10 Hz, H at C-3, 2.25 (m, 1H), 2.20 (s, 3H), 2.20-2.00 (m, 5H), 1.90 (m, 2H), 0.90 (s, 9H), 0.00 (s, 6H); MS for C₁₆H₃₀N₂OSi cald. 294, found 295 (M+1). Compound**2** $: mp: 77°C; ¹H NMR (CDCl₃, 300 MHz) <math>\delta$: 4.05 (dd, 1H, J=5, 12 Hz), 3.85 (dd, 1H, J=7, 12 Hz), 3.30 (broad, 1H), 3.10 (broad, 1H), 2.85 (dt, 1H, J=6, 12 Hz, H at C-3), 2.10 (s, 3H), 2.0–1.5 (m, 7H), 0.85 (s, 9H), 0.00 (s, 6H); MS for C₁₆H₃₀N₂OSi cald.

294, found 295 (M+1). Compound 1: ¹H NMR (CDCl₃, 300 MHz) δ : 7.25 (m, 5H), 3.86 (d, 1H, J=17 Hz), 3.68 (s, 3H), 3.65 (d, 1H, J=17 Hz), 3.25 (s, broad, 1H), 3.10 (s, broad, 1H), 2.68 (dt, 1H, J=6, 12 Hz, H at C-3), 2.57 (m, 1H), 2.20 (s, 3H), 1.95 (m, 4H), 1.30 (m, 3H).

10. Stojanovic, M. N.; Prada, P. D.; Landry, D. W. J. Am. Chem. Soc. 2000, 122, 11547.