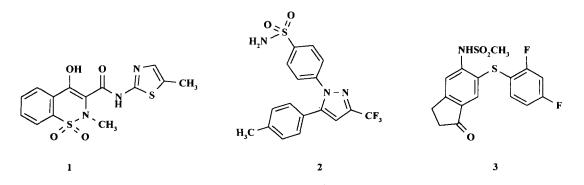


Bioorganic & Medicinal Chemistry Letters 8 (1998) 1181-1186

ANTIINFLAMMATORY 2-BENZYL-4-SULFONYL-4H-ISOQUINOLINE-1,3-DIONES: NOVEL INHIBITORS OF COX-2

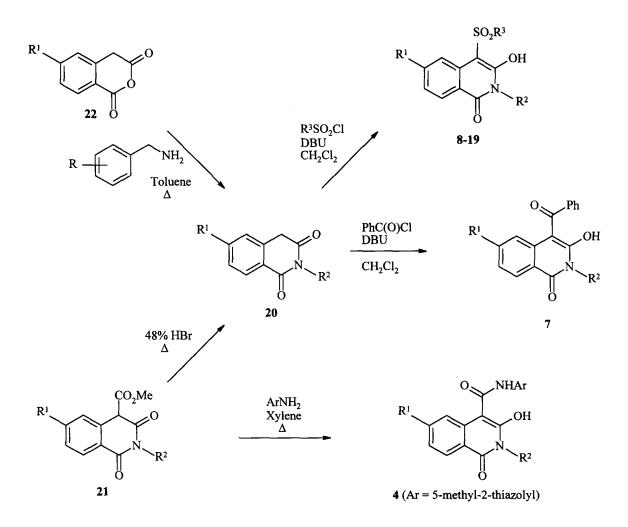
Edward S. Lazer,* Ronald Sorcek, Charles L. Cywin, Diane Thome, Genus J. Possanza , Anne G. Graham and Laurie Churchill

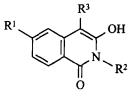

Departments of Medicinal Chemistry, Inflammatory Diseases, and Pharmacology, Boehringer Ingelheim Pharmaceuticals, Inc. 900 Ridgebury Rd., Ridgefield, CT 06611, U.S.A.

Received 2 February 1998; accepted 3 April 1998

Abstract: A series of 2-benzyl-4-sulfonyl-4*H*-isoquinoline-1,3-diones was prepared. Members of this series are potent and selective inhibitors of cyclooxygenase-2 (COX-2) in both microsomal and cellular assays. Two representatives demonstrated activity in the carrageenan-induced paw edema model in rats upon oral administration. © 1998 Elsevier Science Ltd. All rights reserved.

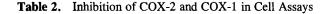
The discovery of a new isoform of cyclooxygenase (COX-2) has stimulated a renewed interest in the field of non-steroidal antiinflammatory drugs (NSAIDs). In the early 1990's it was recognized that in addition to the constitutively expressed COX-1, there is a second isoform, COX-2. In contrast to the constitutive enzyme, levels of both COX-2 protein and mRNA are increased by inflammatory stimuli such as mitogens or certain cytokines, and decreased by glucocorticoids.¹ These findings led to the hypothesis that the gastrointestinal and renal toxicity often observed with NSAIDs is due to inhibition of COX-1, while the desired antiinflammatory activity is mediated by inhibition of COX-2. Therefore a selective inhibitor of COX-2 would have a superior safety profile.

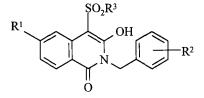

Since this discovery, pharmaceutical companies have been searching for selective COX-2 inhibitors. Meloxicam² (1), an enol-carboxamide, is the first marketed selective inhibitor. Celecoxib³ (2), is in Phase III clinical trials and is representative of the diarylheterocycle class of COX-2 inhibitors. A third class that has received much attention is the arylsulfonamides, represented by L-745,337⁴ (3).


0960-894X/98/\$19.00 © 1998 Elsevier Science Ltd. All rights reserved. *PII:* S0960-894X(98)00184-X We reported previously⁵ on the SAR of enol-carboxamide type NSAIDs and concluded that further modification of this class was unlikely to improve the COX-2 selectivity exhibited by meloxicam. In the course of this work we noted that while the N-methyl was essential for activity in meloxicam-like enol-carboxamides, a benzyl substituent was tolerated in 1,3-dioxoisoquinoline-4-carboxamides. For example, compound 4 exhibits activity in a microsomal COX-2 assay although it is non-selective (Table 1). Further modification of these compounds led us into a new series of 2-benzyl-4-sulfonyl-4*H*-isoquinoline-1,3-diones, and some novel selective inhibitors of COX-2.

Sulfones 8-19 were prepared by reaction of homophthalimide 20 with the appropriate alkyl- or arylsulfonyl chloride in the presence of DBU (Scheme 1). Ketone 7 was prepared under the same conditions using benzoyl

Scheme 1




Table 1. Inhibition of COX-2 and COX-1 in Microsomal Assays

COX-1 ^a 0.1 /mL
/IIII./
1 -7
5 8
0 9
7 15
.9 -18
9 17
2 9
2 -9
5 4
1 -6
4 -3
28 11
7 10
44 44
31 33
34 10
10 13

^aEach drug concentration (10, 1 or 0.1 μ g/mL) was run in duplicate wells within the individual experiments. Results are expressed as the mean % inhibition of PGE₂ production. Detailed assay conditions are provided in reference 2. ^b5Me2Thz = 5-methyl-2-thiazolyl. chloride. Amide **4** was prepared by heating ester **21** with 2-amino-5-methylthiazole. Intermediates **20** were prepared either by reaction of a homophthalic anhydride (**22**) with a benzyl amine ($R_1 = H$) or by hydrolysis and decarboxylation of **21** ($R_1 = Cl$). Intermediates **21** have been described in the literature.⁶

Cpd	R ¹	R ²	R ³			X-2 ^a 0.1	IC ₅₀ (μΜ)				IC ₅₀ (μΜ)
1							0.16 ^b				2.20
8	Н	Н	Ph	69	46	36	0.14 ^c	93	54	21	0.73
12	Н	Н	<i>i</i> -Pr	65	49	37	0.29 ^c	77	48	26	0.34 ^c
13	Н	4-Cl	<i>i-</i> Pr	64	51	9		69	44	-15	
14	Н	4-F	<i>i</i> -Pr	82	72	50	0.09 ^b	87	66	46	0.25
15	Н	3,4-diF	<i>i</i> -Pr	76	54	37	0.2 ^b	90	54	24	0.57
18	Cl	Н	<i>i</i> -Pr	96	80	62	0.06	83	43	33	1.42
19	Cl	3,4-diF	<i>i</i> -Pr	92	71	64	0.1	81	49	18	1.36

^aEach drug concentration (10, 1 or 0.1 μ M) was run in triplicate wells within the individual experiments. Results are expressed as the mean % inhibition of PGE₂ production. The calculated IC₅₀ value is the concentration that caused a 50% decrease in the maximal inhibition of cyclooxygenase activity as measured by PGE₂ production. Maximal inhibition (I_{max}) was 90%-100% unless noted. Detailed assay conditions are provided in reference 2. ^bI_{max} = 84%. Among the alkyl sulfones examined (9-15) an isopropyl sulfone was superior giving greater than 50% inhibition of COX-2 at both 10 and 1 μ g/mL in a microsomal assay with less inhibition of COX-1. Aryl sulfones 16 and 17, like 8, were active but non-selective. A comparison of 18 and 19 with 12 and 15 indicates that a 6-Cl substituent enhances potency in the microsomal assay.

Several of these compounds were evaluated for COX-2 and COX-1 inhibition in cellular assays using stably transfected Cos-A2 cells (Table 2). IC_{50} values were determined for four of the most active compounds. Phenyl sulfone 8 was again active but non-selective. Isopropyl sulfones 12-15 were active but only slightly selective at best. Comparing 18 and 19 with 12 and 15 shows that as in the microsomal assay, a 6-Cl group improved activity in the COX-2 assay. More importantly it provided the most potent and selective compound 18, with an IC_{50} of 0.06 μ M in the cellular COX-2 assay and 1.4 μ M for COX-1.

Compounds 18 and 19 were tested for antiinflammatory activity in the carrageenan paw edema model⁷. The results in Table 3 show that these compounds did demonstrate significant activity at 30 mg/kg p.o. In conclusion, we have described a novel series of cyclooxygenase inhibitors, in which COX-2 selectivity can be enhanced by structural modification and antiinflammatory activity can be demonstrated in vivo.

Cpd	Dose (mg/kg) ^a	% Inh.		
1	30	56 ^b		
18	30	43 ^b		
19	30	39 ^b		

Table 3. Inhibition of Carrageenan-Induced Paw Edema

^aCompounds dosed orally, 6 rats per test group.

^bSignificantly different from vehicle control group, p < 0.05.

References:

- (a) O'Banion, M. K.; Winn, V.; Young, D. A. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 4888. (b) Kujubu, D. A.; Herschmann, H. R. J. Biol. Chem. 1992, 267, 7991.
- Churchill, L.; Graham, A. G.; Shih, C.-K.; Pauletti, D.; Farina, P. R.; Grob, P. M. Inflammopharmacology 1996, 4, 125.
- Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins, P. W.; Docter, S.; Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; Rogers, R. S.; Rogier, D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. A.; Kobolt, C. M.; Perkins, W. E.; Seibert, K.; Veenhuizen, A. W.; Zhang, Y. Y.; Isakson, P. C. J. Med. Chem. 1997, 40, 1347.
- Prasit, P.; Black, W. C.; Chan, C.-C.; Ford-Hutchinson, A. W.; Gauthier, J. Y.; Gordon, R.; Guay, D.; Kargman, S.; Lau, C.K.; Li, C.-S.; Mancini, J.; Ouimet, N.; Roy, P.; Tagari, P.; Vickers, P.; Wong, E.; Young, R. N.; Zamboni, R. L. Med. Chem. Res. 1995, 5, 364.
- Lazer, E. S.; Miao, C. M.; Cywin, C. L.; Sorcek, R.; Wong, H.-C.; Meng, Z.; Potocki, I.; Hoermann, M.; Snow, R. J.; Tschantz, M. A.; Kelly, T. A.; McNeil, D. W.; Coutts, S. J.; Churchill, L.; Graham, A. G.; David, E.; Grob, P.M.; Engel, W.; Meier, H.; Trummlitz, G. J. Med. Chem. 1997, 40, 980.
- 6. Malamas, M. S.; Hohman, T. C.; Millen, J. J. Med. Chem. 1994, 37, 2043.
- 7. Winter, C. A.; Risley, E. A.; Nuss, G. W. J. Pharmacol. Exp. Ther. 1963, 141, 369.