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Abstract : A new and efficient diastereoselective (upto 76% de) synthesis of 2-aryl-3-pyrroline 
derivatives 3a-f has been achieved by [3+2] cycloaddition of allylsulfone 1 and non-racemic 
sulfinimines 2. Separation of the diastereomers led to optically pure 2(R)-pyrrolines (62-72% yield). 
The N-sulfinyl auxiliary can be removed with TFA. Copyright © 1996 Elsevier Science Ltd 

Many naturally occuring alkaloids and biologically active compounds posses the pyrrolidine moiety as a 

basic skeleton. 2 Numerous reports have described the application of pyrrolidine or pyrroline derivatives as 

chiral ligands, 3 chiral auxiliaries, 4 chiral bases, 5 and chiral building blocks for supramolecular chemistry. 6 A 

wide variety of synthetic approaches to the pyrroline or pyrrolidine skeleton are available. Most of the 

syntheses of chiral pyrrolidines emerge from natural amino acids as chiral auxiliaries 7 or are based on 

diastereoselective alkylation 8 or asymmetric hydrogenation 9 of an existing pyrroline moiety. 

Herein, we describe a general approach to chiral non-racemic 2-arylpyrrolidine derivatives employing a 

[3+2] cycloaddition strategy l° that involves the anion of allyl sulfone 1 and non-racemic sulfinimines" 2 as 

the chiral source. Based on our studies of 1 with unsaturated esters to afford A 12 we visualised that reaction of 

3-(benzenesulfonyl)-2-bromomethyl-l-propene 1 , a 1,3-dipole equivalent of trimethylenemethane (TMM), 

with electrophilic imines 2 could lead, hopefully in a diastereoselective manner, to functionalized 4- 

methylenepyrrolidines B. 
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The required chiral sulfinirtfines (2a-f)  were prepared employing the method of Davis etal. '3Though, 

initially reaction of the anion of 1 with sulfinimine (S)-2a led to a mixture of ill-defined products, optimization 

(LDA at -100 ° C and utilization of HMPA) led to isolation of a cycloadduct in 70% yield. The adduct was 

shown by NMR to be a pyrroline formed as a 7.3:1 mixture of two diastereomers, 3a  and 4a,  separable by 

chromatography on silica gel. The ~H NMR spectrum of 3a showed a broad singlet at 8 2.26(3H), two ddd at 

8 4.28 and 4.56(each IH) and dq at 8 5.74(IH). The corresponding signals in '3C NMR at 8 13.0(q), 60.3(t), 
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67.7(d) further confirmed the assigned structure. All our attempts to isolate an 4-exomethylene derivative(see 

B) were unsuccessful; apparently under the basic conditions isomerisation of the exo  to the endo  double bond 

occurs readily ~4 due to the presence of the neighbouring sulfone function. The reaction was found to be 

general with other aryl sulfinimines (2b-f) giving rise to the corresponding 3-pyrroline derivatives (3b-f  and 

4b-f) t5 in good yield and with a diastereomeric ratio of 3:1 to 7: l(Table I). The observed diastereoselection is 

presumably attributable to Li* chelation in the transition state between the sulfone and sulfinimine oxygens. 
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Scheme 1 

Table I: Formation of chiral pyrrolines 3a-f and 4a-f and yields of 3 by reaction of I with 2a-f at - 100°C 

Entry Ar Ratio ~ 3:4 Yieldb (%) [C~]D 25 of 3 

a Ph 88:12 70 -81.8(c 1.1 ,CHCI0 
b p-MeOPh 75:25 62 -92.8(c 1.2, CHC13) 
c p-MePh 86:14 72 -83.8(c0.84, CHC13) 
d p-C1Ph 83:17 68 - 130(c 1,CHCI~) 
e 2-Furyl 88:12 70 -38(c 1.05, MeOH) 
f 3-Pyridyl 86:14 66 -70(c 1, CHC13) 

(a) based on ~H NMR of crude product (b) Isolated yield of the major diastereomer 3. The minor diastereomer 
4 was isolated in 10-20% yield. 

In a typical experiment, 1 mmol of 1 in lmL of THF was added to a solution of LDA (1.2 equiv.) in 

THF at -100°C. After 10 min, sulfinimine (S)-2a (1.1 equiv.) was added slowly and the solution was stirred at 

-100°C for 30 min. HMPA was added and the mixture was stirred at -90°C for further 2h (Scheme 1). 

Quenching of the reaction mixture with saturated aq. NH4CI solution and work up afforded the crude 1-p- 

tohienesulfinyl-4-methyl-2-phenyl-3-benzenesulfonyl-3-pyrroline as a 7.3:1 mixture of two diastereomers 3a 

and 4a. The two diastereomers were easily separated by silica gel flash chromatography using 4:6 ethyl 

acetate:pet.ether. X-ray crystallographic analysis of 3a establishes the absolute configuration as 2(R), S(S)J 6 

The N-sulfinyl group in 3a was removed by treating with 2-equiv. of TFA in methanol at 0°C for 3-4 h 

and pyrroline 5 was isolated in 90% yield [[ct]D25=-42 ° (c 0.95, MeOH)]. Removal of the sulfinyl group from 

4a, gave pyrroline 5a, the enantiomer of 5 [[0~]D25~---+50° (C 1.0, MeOH)] indicating the diastereomeric 
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relationship between (R,S) 3a and (S,S) 4a. Attempts to desulfonate 3a cleanly using Na(Hg) were 

unsuccessful and refluxing of 3a with sodium dithionite and sodium hydrogencarbonate in aqueous methanol '7 

afforded compounds 6 and 7 in 80% yield in a 3:1 ratio. We succeeded in obtaining pyrrotines 8e and 8f by 

reaction of 3c and 3f respectively with Na(Hg). Treatment of 5 with potassium on graphite '8 in THF at 20°C 

yielded 2-phenyl-4-methylpyrrole 6 as the only isolable product in 60% yield (Scheme 2). Hence, this 

methodology can serve as a short route to 2-arylpyrrole derivatives 19 starting from 1 and racemic sulfinimines. 
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In summary, this methodology based on Michael addition of I to (S)-sulfinimines 2 serves as a novel 

and efficient stereoselective route to optically active 2(R)-arylpyrroline derivatives. Starting from (R)(-) 

sulfinimines 2 and 1, the antipode of 3 can be prepared. Further elaboration of these chiral pyrrolines is in 

progress. 
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