A STRATEGY TO 3-ACYL-4-METHYL FURANS. SYNTHESIS OF (±)-EVODONE

A. Srikrishna* and K. Krishnan

Department of Organic Chemistry, Indian Institute of Science

Bangalore-560 012 INDIA

<u>Abstract</u>:Synthesis of Evodone <u>l</u> <u>via</u> the radical cyclisation of the bromoacetal 4 to methylene tetrahydrofuran 5 is described.

Evodone (1), a furanomonoterpene isolated from Evonia hortensis Forst., contains 3-acyl-4-methyl furan unit, 1,2 a structural moiety frequently encountered in terpenoids. In this communication, we now describe the synthesis of 1 starting from 5-methyl cyclohexane-1,3-dione (2)³ based on radical cyclisation reaction.⁴ This in turn provides a general methodology to 3-acyl-4-methyl furans from 1,3-dicarbonyl compounds.

The synthetic sequence is depicted in the Scheme 1. Enol ether 3, obtained by treatment of 2 with diazomethane or trimethyl orthoformate in presence of toluene-p-sulfonic acid (PTSA), was brominated with N-bromo succinimide (NBS) in propargyl alcohol-methylene chloride medium at ice temperature to furnish the key radical precursor 4 in $\sim 60\%$ yield. The radical cyclisation of 4 was carried out by refluxing a 0.02 M solution in benzene with 1.2 equiv. of tributyltinhydride⁵ in presence of a catalytic amount of azobisisobutyronitrile (AIBN) to generate the 4-methylene tetrahydrofuran 5, which is too labile to purify. Compound 5 was directly aromatised, using a catalytic amount of PTSA in benzene at room temperature for 15 min, to Evodone 1 (45% from 4), which exhibited spectral data identical to those reported in the literature. 2

This methodology has been extended to several 1,3-dicarbonyl compounds, both acyclic and cyclic to generate various 3-acyl-4-methyl furans. The results are summarised in table $1.^6$ It is interesting to note entries c and d in the table, where mixtures of isomeric furans were formed in the aromatisation step, probably via ring opening and reclosure of intermediates $\underline{5c}$ and $\underline{5d}$ under acidic conditions.

i. NBS (1.2 eq), $HC=C-CH_2OH$, CH_2Cl_2 , 10^OC , 2h; ii. $^{n}Bu_3SnH(1.2eq)$, AIBN (cat.), Benzene, 80^OC , 1.5h iii. PTSA (cat.), benzene, 15min.

Table	1:	3-Acyl-4-methyl	furans	from	eno l	ethers	(3) a
		o mocniji	L G L GIIO	T T OIL	C 110 I	CCHCLD	\ J / •

entry	enol ether(<u>3</u>)	Furan(<u>1</u>)	Yie	Yields of		
	_		<u>4</u>	<u>1</u>		
<u>a</u>	MeO		85	69		
p	MeO O OEt	EtO	84	47		
Ē	O OMe	Ph	85	35 ^b		
₫	MeO O	Ph	87	62 ^C		
<u>e</u>	OMe		60	46		

a.Reactions were carried out typically on one mmole scale and yields (not optimised) refer to isolated and chromatographically pure products. b. contains 4:1 mixture oflc and ld. c. Contains 1:1 mixture of lc and ld.

References and notes:

- A.J. Birch and R.W. Richards, Aust. J. Chem., 9, 241 (1956) references cited therein.
- 2. P.A. Jacobi, D.G. Walker and I.M.A. Odeh, J. Org. Chem., 46, 2065 (1981) M. Miyashita, T. Kumazawa and A. Yoshikoshi, J. Org. Chem., 45, 2945 (1980) and references cited therein.
- J. Szychowski and D.B. Maclean, Can. J. Chem., <u>57</u>, 1631 (1979).
- M. Ramaiah, Tetrahedron, 43, 3541 (1987).

 A. Srikrishna, J. Chem. Soc., Chem. Commun., 547 (1987); A. Srikrishna and K.C. Pullaiah, Tetrahedron Lett., 28, 5203 (1987); A. Srikrishna and G. Sunderbabu, Tetrahedron Lett., 28, 6393 (1987); J.P. Dulcere, J. Rodriguez, M. Santelli and J.P. Zahra, Tetrahedron Lett., 28, 2009 (1987)
- Spectral data for 4a(5:2 mixture of diastereomers): IR (neat), 1720 cm⁻¹; H NMR (270 MHz, $C\overline{DC1}_3$), & 4.6&4.54 (1H,s), 4.2&4.18 (2H,d,J=2Hz), 3.3&3.2 (3H,s), 2.45&2.48 (1H,t,J=2Hz), 2.4&2.36 (3H,s), 1.54&1.55 (3H,s); for 5a: IR (neat),1705, 900, 860 cm⁻¹; H NMR (270 MHz, CDC1₃), & 5.1 (2H,&Drs), 4.6 & 4.4 (2H,&ABq,&J=13Hz), 3.55 (1H,s), 3.23 (3H,s), 2.18 (3H,s), 1.39 (3H,s); for 1a: IR (neat), 1670 cm⁻¹, H NMR (270 MHz, CDC1₃), & 7.03 (1H,s), 2.55 (3 $\frac{H}{3}$,s), 2.43 (3H,s), 2.17 (3H,s).

(Received in UK 18 July 1988)