Tetrahedron 70 (2014) 742-748

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Concise total syntheses of heliannuols B and D

Yuki Manabe, Makoto Kanematsu*, Hiromasa Yokoe, Masahiro Yoshida, Kozo Shishido*

Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78-1 Sho-machi, Tokushima 770-8505, Japan

ARTICLE INFO

Article history:

ABSTRACT

Concise and efficient enantioselective total syntheses of heliannuols B and D have been accomplished using chirality transfer through a Lewis acid-promoted Claisen rearrangement for the construction of the C7 tertiary stereogenic center and a relay ring-closing metathesis for assembling the dihydrobenzo[b] oxepine backbone of the natural products as the key steps.

© 2013 Elsevier Ltd. All rights reserved.

Received 30 October 2013 Received in revised form 16 November 2013 Accepted 20 November 2013 Available online 3 December 2013

Keywords: Total synthesis Sesquiterpenoids Relay ring-closing metathesis Diastereoselectivity Claisen rearrangement

1. Introduction

The helianane sesquiterpenoids heliannuols B(1) and D(2) were isolated from the moderately polar active fractions of the aqueous leaf extract of Helianthus annuus L. var. SH-222 and VYP.¹ Their structures were elucidated by extensive spectroscopic studies, Xray crystallographic analysis (for 2), and chemical correlations. The absolute configurations were established by our first enantioselective total synthesis of heliannuol D (**2**).² These sesquiterpenoids significantly inhibit the growth of both dicotyledon (Lactuca sativa and Lepidium sativum) and monocotyledon species (Hordeum vulgare and Triticum aestivum). Consequently they are excellent candidates for natural herbicide models with certain specificity against dicotyledon species.³ Because of their intriguing structural features, biological profiles, and limited availability, these natural products represent attractive targets for total synthesis. To date, several successful total syntheses have been reported in racemic and optically active forms.^{4,5} In this report, we describe the concise enantioselective total syntheses of heliannuols B (1) and D (2) via chirality transfer through a Lewis acid-mediated Claisen rearrangement for the construction of the benzylic tertiary stereogenic center at C7 and relay ring-closing metathesis (RRCM) for assembling the dihydrobenzo[b]oxepine skeleton, the core structure of the natural products, as the key steps (Fig. 1).

* Corresponding authors. Tel.: +81 88 633 7287; fax: +81 88 633 9575; e-mail addresses: makotokanematsu@yahoo.co.jp (M. Kanematsu), shishido@ph.tokush-ima-u.ac.jp (K. Shishido).

0040-4020/\$ – see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2013.11.070

Fig. 1. Structures of heliannuols B and D.

During the course of our synthetic studies on the related helianane sesquiterpenoid heliannuol K (**5**), we developed a useful technique for constructing the dihydrobenzo[b]oxocinone **4**, which was efficiently converted to **5**, employing the ring-closing metathesis (RCM) of the functionalized diene **3** (Scheme 1).⁶ It was thought that this strategy could also be applied to the assembly of the dihydrobenzo[b]oxepine backbone of heliannuol B (**1**).

Scheme 1. Synthesis of heliannuol K via RCM.

Tetrahedror

2. Results and discussion

Our retrosynthetic analysis is shown in Scheme 2. We envisioned a sequential RCM⁷ of the suitably functionalized dienyl alcohol **6**, possessing the correct absolute configurations of the two stereogenic centers at C7 and C10, and deprotection to give heliannuol B (**1**), which could be converted to heliannuol D (**2**) by hydrogenation.^{4a} The diene **6** would be derived from **7** by desilylation followed by dehydration of the resulting primary alcohol. Compound **7**, in turn, would be prepared by coupling of (*S*)-methyl 4-(*tert*-butyldiphenylsilyloxy)-2-hydroxybutanoate (**8**)⁸ with the phenol **9**,^{5d,6} which can be prepared by the substrate controlled chirality transfer through the Lewis acid-promoted Claisen rearrangement of **10**, with inversion of configuration at the future C10 (Scheme 2).

Treatment of 10 with trimethylaluminum in hexane at room temperature for 0.5 h provided a chromatographically separable mixture of 9 and 11 in 88% (>99% ee) and 10% yield, respectively.^{5d,6} For the synthesis of **7**, we initially examined the Mitsunobu reaction of the phenol **9** with the optically pure alcohol **8**, using various Mitsunobu conditions;9 however, the reaction did not work and only the unreacted starting materials were recovered. Therefore, we turned our attention to an $S_N 2$ type coupling of the triflate 12, derived from 8, and 9. Treatment of 12 with 9 in the presence of K₂CO₃ in acetonitrile at room temperature provided **7** quantitatively.¹⁰ Grignard reaction of **7** with methylmagnesium bromide followed by desilvlation of the resulting tertiary carbinol 13 produced the diol 14. Selective dehydration of the primary alcohol using the Nishizawa–Grieco protocol¹¹ provided the requisite diene 6 for the key RCM. Treatment of 6 in refluxing CH₂Cl₂ with 5 mol % of Grubbs' second-generation catalyst¹² did not give the expected cyclized product 15 and the unreacted 6 was recovered in 94% yield.¹³ When the reaction was conducted in toluene at 80 °C, 6 was also recovered in 92% yield. Under refluxing toluene for two days, only the phenol 16, generated via the Claisen rearrangement, was produced in 26% yield. Since this result can be attributed to the steric bulkiness around the allyl ether moiety, we therefore chose the ester 17 as the substrate for the RCM leading to 19 because it was likely to be less sterically congested than the tertiary carbinol functionality in 6. Sequential desilylation and dehydration provided 18, which was exposed to the RCM conditions under refluxing CH₂Cl₂ or toluene; however, only the unreacted 18 was produced in 72% and 94% yield, respectively (Scheme 3).

Scheme 3. Attempted RCM of **6** and **13**. Reagents and Conditions: (a) Me₃Al, hexane, room temperature, 0.5 h, 88% for **9**, 10% for **11**; (b) Tf₂O, 2,6-lutitine, CH₂Cl₂, $-20 \degree C$, 20 min, quant; (c) **9**, K₂CO₃, MeCN, room temperature, 4 h, quant; (d) MeMgBr, THF, 0 °C, 0.5 h, 89%; (e) TBAF, THF, room temperature, 0.5 h, 87%; (f) o-NO₂C₆H₄SeCN, ⁿBu₃P, THF, room temperature, 0.5 h; (g) H₂O₂ (aqueous), THF, 60 °C, 15 min, 50% (two steps for **6**), 47% (two steps for **18**); (h) Grubbs' second-generation cat. (5 mol %), CH₂Cl₂ or toluene reflux; (i) HF·pyridine, THF, pyridine, room temperature, 1.5 h, 78%.

As seen in the previous paper, the ineffectiveness of standard RCM protocols led us to use a RRCM, which worked well with a substrate possessing a higher level of steric congestion around the olefinic bonds.¹⁴ Consequently, we decided to use this methodology for assembling the functionalized dihydrobenzo[b]oxepine, the backbone of the heliannuols B and D. Selective debenzylation of **13** with LiDBB¹⁵ followed by allylation of the resulting alcohol 20 provided the allyl ether 21 in 90% yield for the two steps. This was subjected to sequential desilylation and dehydration to give 23 in 62% overall yield. Treatment of a solution of 23 in CH₂Cl₂ with Grubbs' second-generation catalyst (5 mol %) at room temperature for 3 h delivered the requisite 15 quantitatively via the ruthenium alkylidene species 24. Thus, the problem was overcome by the use of RRCM to affect the crucial cyclization. Exposure of 15 to 6 M aqueous hydrochloric acid in THF gave (-)-heliannuol B (1) quantitatively. The only discrepancy concerned the specific rotation: we observed in repeated measurements under higher concentrations a value of $\left[\alpha\right]_{D}^{25}$ –77.5 (c 1.10, CHCl₃) for synthetic heliannuol B (**1**), whereas significantly lower values of $[\alpha]_D^{25}$ –15.0 (*c* 0.10, CHCl₃),¹ and $[\alpha]_D^{25}$ –22 (*c* 0.7, CHCl₃)^{4a} were reported for the natural and synthetic 1, respectively. This noticeable discrepancy remains unresolved at the present time. Compound 1 was then hydrogenated over palladium on carbon to

provide (+)-heliannuol D (**2**), $\{[\alpha]_D^{25} + 18.2 (c \ 0.75, CHCl_3); lit.¹ <math>[\alpha]_D^{25} + 16 (c \ 0.10, CHCl_3); lit.^{5b} <math>[\alpha]_D^{28} + 18.0 (c \ 1.01, CHCl_3)\}$, in 94% yield. The spectral properties of **1** and **2** were identical with those for the natural heliannuols B and D (Scheme 4).

Scheme 4. RRCM approach for the syntheses of **1** and **2**. Reagents and conditions: (a) LiDBB, THF, $-78 \,^{\circ}$ C, 3 min, 91%; (b) NaH, allyl bromide, THF, room temperature, 6 h, 99%; (c) TBAF, THF, room temperature, 3 min, quant.; (d) *o*-NO₂C₆H₄SeCN, ⁿBu₃P, THF, 0 $^{\circ}$ C, 5 min; (e) H₂O₂ (aqueous), THF, 60 $^{\circ}$ C, 20 min, 62% (two steps); (f) Grubbs' second-generation cat. (5 mol %), CH₂Cl₂, room temperature, 3 h, quant.; (g) 6 M HCl (aqueous), THF, 0 $^{\circ}$ C, 0.5 h, quant.; (h) H₂, 10% Pd-C, ACOEt, room temperature, 2.5 h, 94%.

3. Conclusion

We have completed concise enantioselective total syntheses of heliannuols B (1) and D (2) using the RRCM of 23 for assembling the dihydrobenzo[*b*]oxepine backbone of the natural products as the key step. The syntheses were efficiently achieved in a longest linear sequence of eight steps in 50% yield and nine steps in 47% yield, respectively, from the phenol 9, which was prepared by the use of chirality transfer through a Lewis acid-promoted Claisen rearrangement for the construction of the tertiary stereogenic center at C7 (natural product numbering).¹⁶ The synthetic route developed here could be applied to the synthesis of not only other helianane sesquiterpenoids but also new families of man-made compounds for biological screening.

4. Experimental

4.1. General experimental methods

All nonaqueous reactions were carried out under a positive atmosphere of argon in dried glassware unless otherwise indicated. Materials were obtained from commercial suppliers and used without further purification expect when otherwise noted. Solvents were dried and distilled according to standard protocols. The phrase 'residue upon workup' refers to the residue obtained when the organic layer was separated and dried over anhydrous MgSO₄ and the solvent was evaporated under reduced pressure. NMR spectra were recorded on a 400 MHz or 500 MHz instrument. ¹H NMR were measured in CDCl₃ solution and referenced to TMS (0.00 ppm). ¹³C NMR were measured in CDCl₃ solution and referenced to CDCl₃ (77.0 ppm). Chemical shifts are reported in parts per million (from TMS). When peak multiplicities are reported, the following abbreviations are used: s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; m, multiplet; br, broadened. IR spectra were measured on FT/IR spectrometer. Type of mass analyzer was time of flight mass spectrometry (TOF-mass). Column chromatography was performed on silica gel using the indicated solvent. Thin layer chromatography was performed on precoated plates, and compounds were visualized with UV light and *p*-anisaldehyde stains. All melting points were reported as uncorrected.

4.1.1. (2R,3E)-2-[5-(Benzyloxy)pent-3-en-2-yl]-4-(methoxymethoxy)-5-methylphenol and (2S.3Z)-2-[5-(benzyloxy)pent-3-en-2-yl]-4-(me*thoxymethoxy*)-5-*methylphenol* (**9** *and* **11**). To a stirred solution of aryl allyl ether **10**^{5d,6} (500 mg, 1.46 mmol) in hexane (10.0 mL) was added Me₃Al (1.08 M in hexane, 4.00 mL, 4.38 mmol) at 0 °C. After being stirred for 0.5 h at room temperature, the reaction mixture was diluted with Et₂O. The resultant mixture was quenched with water, and then filtered through a pad of Celite. The residue upon workup was chromatographed on silica gel with hexane/AcOEt (9:1 v/v) as eluent to afford phenol 9 (441 mg, 88%, >99% ee) as a colorless oil and the Zisomer **11** (48.5 mg, 10%) as a colorless oil; **9**: $[\alpha]_{D}^{25}$ -3.83 (*c* 1.20, CHCl₃); IR (neat) 3375, 2960, 2928, 1513, 1453, 1398, 1148, 1004, 740, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 7.36 (5H, m), 6.82 (1H, s), 6.61 (1H, s), 5.94 (1H, dd, *J*=6.0 and 15.6 Hz), 5.71 (1H, ddt, *J*=1.2, 6.0, and 15.6 Hz), 5.09 (2H, s), 4.60 (1H, s, OH, D₂O exchangeable), 4.50 (2H, s), 4.02 (2H, d, *J*=6.0 Hz), 3.66 (1H, quint., *J*=7.2 Hz), 3.49 (3H, s), 2.18 (3H, s), 2.18 (3H, s), 1.38 (3H, d, *J*=6.8 Hz); ¹³C NMR (100 MHz, CDCl₃) 149.5 (C), 148.1 (C), 138.2 (C), 138.0 (CH), 138.0 (CH), 128.8 (CH), 128.3 (CH), 127.8 (CH), 127.6 (CH), 126.8 (C), 126.8 (C), 125.7 (CH), 114.9 (CH), 118.3 (CH), 95.8 (CH₂), 71.9 (CH₂), 70.6 (CH₂), 56.0 (CH₃), 36.1 (CH), 19.3 (CH₃), 15.8 (CH₃); HRMS (ESI) *m*/*z* calcd for C₂₁H₂₇O₄ [M+H]⁺ 343.1909, found 343.1902. Enantiomeric excess was determined by HPLC analysis [Chiralcel AD column, 10% isopropanol/hexane, 1.0 mL/ min, λ =254 nm, retention times 22.1 min (*R*) and 25.3 min (*S*)]; 11: $[\alpha]_{D}^{25}$ +154.1 (*c* 2.59, CHCl₃); IR (neat) 3365, 2960, 2927, 1513, 1454, 1398, 1190, 1149, 1007, 738, 699 cm $^{-1}$; ¹H NMR (400 MHz, CDCl₃) 7.37 (5H, m), 6.87 (1H, s), 6.64 (1H, s), 6.42 (1H, s, OH, D₂O exchangeable), 5.60 (1H, dt, J=6.4 and 10.8 Hz), 5.55 (1H, dd, J=8.4 and 10.8 Hz), 5.10 (2H, s), 4.62 (1H, d, J=12.0 Hz), 4.58 (1H, d, J=12.0 Hz), 4.23 (1H, dd, J=4.4 and 11.2 Hz), 4.03 (1H, dq, J=2.8 and 6.8 Hz), 3.93 (1H, dd, J=6.0 and 11.2 Hz), 3.50 (3H, s), 2.18 (3H, s), 1.32 (3H, d, J=7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) 149.5 (C), 148.8 (C), 140.0 (CH), 140.0 (CH), 137.3 (C), 128.5 (CH), 128.2 (CH), 127.9 (CH), 127.9 (CH), 127.0 (C), 127.0 (C), 122.9 (CH), 118.9 (CH), 113.5 (CH), 95.9 (CH₃), 72.8 (CH₃), 65.1 (CH₃), 56.0 (CH₂), 31.5 (CH), 19.8 (CH₂), 15.8 (CH₃); HRMS (ESI) m/z calcd for C₂₁H₂₇O₄ [M+H]⁺ 343.1909, found 343. 1895.

4.1.2. (2S)-Methyl 2-(trifluoromethylsulfonyloxy)-4-(tert-butyldiphe *nylsilyloxy*)*butanoate* (12). To a stirred solution of alcohol 8^8 (100 mg, 0.268 mmol) in CH₂Cl₂ (0.500 mL) were added 2,6lutidine (40.0 μ L, 0.295 mmol) and Tf₂O (50.0 μ L, 0.298 mmol) at -20 °C. After being stirred for 20 min at the same temperature, the reaction mixture was quenched with silica gel (35.0 mg) and stirred at room temperature for 10 min, then filtered off the silica gel and concentrated. The residue was chromatographed on silica gel with hexane/AcOEt (4:1 v/v) as eluent to afford triflate **12** (135 mg, quant.) as a colorless oil; $[\alpha]_D^{30} - 20.0$ (*c* 1.15, CHCl₃); IR (neat) 2932, 1769, 1419, 1212, 1145, 1112 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 7.66-7.64 (4H, m), 7.46-7.37 (6H, m), 5.48 (1H, dd, J=2.8 and 7.6 Hz), 3.82 (3H, s), 3,77 (2H, t, J=6.0 Hz), 2.26-2.13 (2H, m), 1.05 (9H, s); ¹³C NMR (100 MHz, CDCl₃) 167.8 (C), 135.5 (CH), 135.5 (CH), 135.5 (CH), 135.5 (CH), 132.9 (C), 132.8 (C), 129.9 (CH), 129.9 (CH), 127.8 (CH), 127.8 (CH), 127.8 (CH), 127.8 (CH), 118.4 (C, q, J_{CF}=318 Hz), 80.2 (CH), 58.0 (CH₂), 53.2 (CH₃), 34.8 (CH₂), 26.6 (CH₃), 26.6 (CH₃), 26.6 (CH₃), 19.1 (C); HRMS (ESI) m/z calcd for $C_{22}H_{28}O_6SiSF_3 [M+H]^+$ 505.1328, found 505.1324.

4.1.3. (2R)-Methyl 2-{2-[(2R,3E)-5-(benzyloxy)pent-3-en-2-yl]-4-(methoxymethoxy)-5-methylphenoxy}-4-(tert-butyldiphenylsilyloxy)butanoate (**7**). To a stirred solution of phenol **9** (100 mg, 0.292 mmol) and K₂CO₃ (60.5 mg, 0.438 mmol) in MeCN (2.00 mL) was added a solution of triflate 12 (221 mg, 0.438 mmol) in MeCN (1.00 mL) at room temperature. After being stirred for 4 h, the reaction mixture was filtered off, and then the filtrate was concentrated. The residue was dissolved in AcOEt. The combined extracts were washed with water, saturated aqueous NaHCO3 and brine, and the residue upon workup was chromatographed on silica gel with hexane/AcOEt (3:2 v/ v) as eluent to afford ether 7 (204 mg, quant.) as a colorless oil; $[\alpha]_D^3$ +33.0 (c 0.42, CHCl₃): IR (neat) 3425, 2930, 2857, 1758, 1505, 1195, 1112 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 7.65 (2H, d, *J*=7.2 Hz), 7.58 (2H, d, J=7.2 Hz), 7.43-7.25 (11H, m), 6.84 (1H, s), 6.58 (1H, s), 5.91 (1H, dd, J=5.6 and 15.6 Hz), 5.61 (1H, dt, J=5.6 and 15.6 Hz), 5.10 (1H, d, *I*=10.4 Hz), 5.08 (1H, d, *I*=10.4 Hz), 4.96 (1H, dd, *I*=4.0 and 8.4 Hz), 4.48 (2H, s), 3.98 (2H, d, J=6.0 Hz), 3.80-3.96 (3H, m), 3.69 (3H, s), 3.47 (3H, s), 2.24–2.09 (2H, m), 2.16 (3H, s), 1.23 (3H, d, J=7.2 Hz), 1.04 (9H, s); ¹³C NMR (100 MHz, CDCl₃) 172.5 (C), 150.1 (C), 149.7 (C), 138.6 (C), 138.5 (CH), 135.6 (CH), 135.6 (CH), 135.5 (CH), 135.5 (CH), 133.5 (C), 133.5 (C), 132.9 (C), 129.7 (CH), 129.6 (CH), 128.3 (CH), 127.8 (CH), 127.8 (CH), 127.7 (CH), 127.7 (CH), 127.7 (CH), 127.7 (CH), 127.5 (CH), 126.1 (C), 124.9 (CH), 124.9 (CH), 115.0 (CH), 114.9 (CH), 95.7 (CH₂), 73.7 (CH), 71.7 (CH₂), 71.0 (CH₂), 59.5 (CH₂), 56.0 (CH₃), 52.1 (CH₃), 36.0 (CH₂), 34.5 (CH), 26.9 (CH₃), 26.9 (CH₃), 26.9 (CH₃), 19.8 (CH₃), 19.2 (C), 16.2 (CH₃); HRMS (ESI) *m*/*z* calcd for C₄₂H₅₃O₇Si [M+H]⁺ 697.3561, found 697.3558.

4.1.4. (3R)-3-[2-(2R,3E)-5-Benzyloxypent-3-en-2-yl-4-methoxymethoxy-5-methylphenoxy]-5-(tert-butyldiphenylsilyloxy)-2methylpentan-2-ol (13). To a stirred solution of ester 7 (542 mg, 0.777 mmol) in THF (3.10 mL) was added MeMgBr (1.11 M in THF, 2.80 mL 3.11 mmol) at -78 °C. After being stirred for 0.5 h at 0 °C. the reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with Et₂O. The combined extracts were washed with brine, and the residue upon workup was chromatographed on silica gel hexane/AcOEt (4:1 v/v) as eluent to afford alcohol 13 (454 mg, 84%) as a colorless oil; $[\alpha]_{D}^{25}$ +7.60 (*c* 1.04, CHCl₃); IR (neat) 3476, 2960, 2930, 1499, 1190, 1150, 1111, 1075, 1011 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 7.63 (2H, dd, J=1.2 and 8.0 Hz), 7.48 (2H, dd, J=1.2 and 8.0 Hz), 6.94 (1H, s), 7.27-7.44 (11H, m), 6.87 (1H, s), 5.85 (1H, dd, J=6.4 and 15.6 Hz), 5.57 (1H, dt, J=6.0 and 15.6 Hz), 5.12 (1H, d, J=10.4 Hz), 5.09 (1H, d, J=10.4 Hz), 4.55 (1H, dd, J=3.2 and 8.4 Hz), 4.48 (2H, s), 3.96 (2H, d, J=6.4 Hz), 3.88 (1H, m), 3.69 (2H, dd, J=3.6 and 7.6 Hz), 3.49 (3H, s), 2.55 (1H, br s, OH, D₂O exchangeable), 1.55 (3H, s), 1.94-1.86 (1H, m), 1.78–1.71 (1H, m), 1.27 (3H, s), 1.27 (3H, d, J=6.4 Hz), 1.26 (3H, s), 1.03 (9H, s); ¹³C NMR (100 MHz, CDCl₃) 151.1 (C), 149.4 (C), 138.8 (CH), 138.3 (C), 135.4 (CH), 135.4 (CH), 135.3 (CH), 135.3 (CH), 133.3 (C), 133.3 (C), 131.5 (C), 129.6 (CH), 129.5 (CH), 128.2 (CH), 127.7 (CH), 127.7 (CH), 127.6 (CH), 127.6 (CH), 127.6 (CH), 127.6 (CH), 127.4 (CH), 126.2 (C), 124.9 (CH), 124.9 (CH), 115.4 (CH), 114.5 (CH), 95.6 (CH₂), 81.1 (CH), 72.9 (C), 71.9 (CH₂), 70.7 (CH₂), 60.2 (CH₂), 55.9 (CH₃), 34.7 (CH), 34.0 (CH₂), 26.7 (CH₃), 26.7 (CH₃), 26.7 (CH₃), 26.0 (CH₃), 25.0 (CH₃), 19.8 (CH₃), 19.0 (C), 16.1 (CH₃); HRMS (ESI) *m*/*z* calcd for C₄₃H₅₇O₆Si [M+H]⁺ 697.3924, found 697.3931.

4.1.5. (3*R*)-3-{2-[(2*R*,3*E*)-5-(Benzyloxy)pent-3-en-2-yl]-4-(methoxymethoxy)-5-methylphenoxy)-4-methylphentane-1,4-diol (**14**). To a stirred solution of alcohol **13** (15.0 mg, 21.5 µmol) in THF (0.500 mL) was added TBAF (1.00 M in THF, 20.0 µL, 23.7 µmol) at room temperature. After being stirred for 0.5 h, the reaction mixture was quenched with water and extracted with CH₂Cl₂. The combined extracts were washed with brine, and the residue upon workup was chromatographed on silica gel hexane/AcOEt (7:3 v/v) as eluent to afford alcohol **14** (8.6 mg, 87%) as a colorless oil; $[\alpha]_{32}^{32}$ +6.06 (*c* 0.78, CHCl₃); IR (neat) 3380, 2930, 1500, 1393, 1190, 1150, 1102 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 7.37–7.25 (5H, m), 6.87 (1H, s), 6.77 (1H, s), 5.88 (1H, dd, *J*=15.6 and 6.4 Hz), 5.60 (1H, dtd, *J*=15.6, 6.4, and 1.2 Hz), 5.10 (2H, s), 4.51 (1H, d, *J*=12.0 Hz), 4.48 (1H, d, *J*=12.0 Hz), 4.33 (1H, dd, *J*=6.4 and 4.8 Hz), 3.98 (2H, d,

J=6.0 Hz), 3.86 (1H, quint., J=6.8 Hz), 3.77 (1H, dt, J=10.8 and 5.6 Hz), 3.66–3.59 (1H, m), 3.48 (3H, s), 2.52 (1H, br s, OH, D₂O exchangeable), 2.40 (1H, br s, OH, D₂O exchangeable), 2.20 (3H, s), 2.02–1.87 (2H, m), 1.33 (3H, d, J=6.8 Hz), 1.30 (3H, s), 1.27 (3H, s); ¹³C NMR (100 MHz, CDCl₃) 150.2 (C), 149.4 (C), 138.8 (CH), 138.2 (C), 131.8 (C), 128.3 (CH), 128.3 (CH), 127.8 (CH), 127.8 (CH), 127.5 (CH), 126.2 (C), 124.9 (CH), 114.9 (CH), 114.8 (CH), 95.6 (CH₂), 81.2 (CH), 32.8 (CH₂), 26.2 (CH₃), 25.7 (CH₃), 19.9 (CH₃), 16.3 (CH₃); HRMS (ESI) *m*/*z* calcd for C₂₇H₃₈O₆Na [M+Na]⁺ 481.2566, found 481.2592.

4.1.6. (3R)-3-{2-[(2R,3E)-5-(Benzyloxy)pent-3-en-2-yl]-4-(methoxymethoxy)-5-methylphenoxy}-2-methylpent-4-en-2-ol (6). To a stirred solution of diol 14 (14.0 mg, 30.5 µmol) in THF (2.00 mL) was added o-nitrophenylselenocyanide (20.8 mg, 91.5 µmol) and ⁿBu₃P (18.9 µL, 91.5 µmol) at room temperature. After being stirred for 0.5 h, the reaction mixture was concentrated. The residue was filtered through silica gel column chromatography (hexane/EtOAc, 4:1 v/v) to give the corresponding selenide (21.2 mg), as a yellow oil, which was used to the next reaction without further purification. To a stirred solution of selenide in THF (2.00 mL) was added 30% aqueous H₂O₂ (0.300 mL) at room temperature. After being stirred for 15 min at 60 °C, the reaction mixture was treated with saturated aqueous NaHCO3 and extracted with Et2O. The combined extracts were washed with brine, and the residue upon workup was chromatographed on silica gel with hexane/AcOEt (3:2 v/v) as eluent to afford diene 6 (6.70 mg, 50% for two steps) as a yellow oil; [α]³³_D -4.77 (c 0.57, CHCl₃); IR (neat) 3500, 2972, 1501, 1393, 1191, 1150, 1010 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 7.36–7.21 (5H, m), 6.86 (1H, s), 6.63 (1H, s), 5.90 (1H, ddd, J=14.4, 6.4, and 1.2 Hz), 5.82 (1H. ddd, *J*=17.6, 10.8, and 6.8 Hz), 5.59 (1H, dtd, *J*=15.2, 6.4, and 1.6 Hz), 5.32 (1H, dt, J=9.6 and 1.2 Hz), 5.28 (1H, dt, J=17.6 and 1.2 Hz), 5.09 (2H, s), 4.49 (2H, s), 4.37 (1H, d, J=6.8 Hz), 4.03-3.96 (2H, m), 3.92 (1H, quint., J=7.2 Hz), 3.47 (3H, s), 2.48 (1H, br s, OH, D₂O exchangeable), 2.19 (3H, s), 1.34 (3H, d, J=7.2 Hz), 1.29 (3H, s), 1.27 (3H, s); ¹³C NMR (100 MHz, CDCl₃) 149.6 (C), 149.4 (C), 138.8 (CH), 138.3 (C), 134.2 (CH), 132.0 (C), 128.3 (CH), 128.3 (CH), 127.7 (CH), 127.7 (CH), 127.5 (CH), 125.9 (CH), 125.1 (C), 119.7 (CH), 116.2 (CH), 114.4 (CH), 95.6 (CH₂), 86.2 (CH), 72.4 (C), 71.9 (CH₂), 70.7 (CH₂), 56.0 (CH₃), 34.8 (CH₂), 25.6 (CH₃), 24.6 (CH₃), 19.9 (CH₃), 16.2 (CH₃); HRMS (ESI) m/z calcd for C₂₇H₃₆O₅Na [M+Na]⁺ 463.2460, found 463.2490.

4.1.7. 6-[(2R,3E)-5-(Benzyloxy)pent-3-en-2-yl]-2-[(2E)-4-hydroxy-4-methylpent-2-enyl]-4-(methoxymethoxy)-3-methylphenol (16). To a stirred solution of diene 6 (3.90 mg, 8.85 µmol) in degassed toluene (10.0 mL) was added Grubbs' second-generation catalyst (1.30 mg, 0.443 µmol) at room temperature. After being stirred for 53 h at 110 °C, the resultant mixture was concentrated and the residue was chromatographed on silica gel with hexane/AcOEt (4:1 v/v) as eluent to afford the phenol (16) (1.00 mg, 26%) as a yellow oil; $[\alpha]_D^{29}$ –9.00 (*c* 0.02, CHCl₃); IR (neat) 3446, 2922, 2357, 1152, 972, 743 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 7.34–7.23 (5H, m), 6.78 (1H, s), 5.93 (1H, dd, J=5.6 and 15.6 Hz), 5.75-5.68 (3H, m), 5.63 (1H, d, J=15.6 Hz), 5.10 (2H, s), 4.81 (1H, s), 4.50 (2H, s), 4.01 (2H, d, J=5.6 Hz), 3.68 (1H, m), 3.49 (3H, s), 3.40 (2H, d, J=5.6 Hz), 2.17 (3H, s), 1.39 (3H, d, J=7.2 Hz), 1.27 (6H, s); ¹³C NMR (125 MHz, CDCl₃) 149.6 (C), 147.0 (C), 139.0 (CH), 138.3 (C), 137.6 (CH), 131.2 (C), 128.4 (CH), 128.4 (CH), 128.3 (C), 127.8 (CH), 127.8 (CH), 127.6 (CH), 126.3 (CH), 125.7 (C), 124.1 (CH), 113.1 (CH), 96.0 (CH₂), 72.1 (CH₂), 70.7 (C), 70.5 (CH₂), 56.1 (CH₃), 36.8 (CH), 29.8 (CH₃), 29.8 (CH₃), 26.5 (CH₂), 19.2 (CH₃) 11.9 (CH₃),; HRMS (ESI) *m*/*z* calcd for C₂₇H₃₆O₅Na [M+Na]⁺ 463.2460, found 463.2474.

4.1.8. (3*R*)-*Methyl* 2-{2-[(2*R*,3*E*)-5-(benzyloxy)pent-3-en-2-yl]-4-(methoxymethoxy)-5-methylphenoxy}-4-hydroxybutanoate (**17**). To a stirred solution of ester 7 (20.0 mg, 28.7 μ mol) in THF/pyridine (0.500 mL, 3/1 v/v) was added a drop of HF·pyridine at 0 °C. After being stirred at room temperature for 1.5 h, the reaction mixture was quenched with saturated aqueous NaHCO₃ and extracted with AcOEt. The combined extracts were washed with brine, and the residue upon workup was chromatographed on silica gel hexane/ AcOEt (7:3 v/v) as eluent to afford alcohol 17 (10.2 mg, 78%) as a colorless oil; [α]³²_D +37.0 (*c* 0.47, CHCl₃); IR (neat) 3468, 2957, 1753, 1502, 1192, 1150, 1011 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 7.34–7.25 (5H, m), 6.85 (1H, s), 6.52 (1H, s), 5.95 (1H, ddt, J=15.6, 5.6, and 1.2 Hz), 5.65 (1H, dtd, *J*=15.6, 6.4, and 1.6 Hz), 5.10 (1H, d, *J*=6.8 Hz), 5.07 (1H, d, J=6.8 Hz), 4.83 (1H, t, J=6.0 Hz), 4.50 (2H, s), 4.02 (1H, dd, J=6.4 and 0.8 Hz), 3.92 (1H, quint., J=6.8 Hz), 3.85 (1H, q, J=5.2 Hz), 3.72 (3H, s), 3.46 (3H, s), 2.18 (3H, s), 2.22–2.17 (2H, m), 1.88 (1H, br s, OH, D₂O exchangeable), 1.34 (3H, d, *J*=6.8 Hz); ¹³C NMR (100 MHz, CDCl₃) 172.5 (C), 150.1 (C), 149.5 (C), 138.4 (C), 138.3 (CH), 132.6 (C), 128.3 (CH), 128.3 (CH), 127.8 (CH), 127.8 (CH), 127.5 (CH), 126.3 (CH), 126.1 (C), 125.0 (CH), 115.2 (CH), 114.8 (CH), 95.6 (CH₂), 74.4 (CH), 71.9 (CH₂), 71.0 (CH₂), 56.0 (CH₃), 55.2 (CH₃), 35.5 (CH), 35.3 (CH₃), 19.7 (CH₃), 16.2 (CH₃); HRMS (ESI) *m*/*z* calcd for C₂₆H₃₄O₇Na [M+Na]⁺ 481.2202, found 481.2214.

4.1.9. (3R)-Methyl 2-{2-[(2R,3E)-5-(benzyloxy)pent-3-en-2-yl]-4-(methoxymethoxy)-5-methylphenoxy}but-3-enoate (18). To a stirred solution of alcohol 17 (10.2 mg, 22.2 µmol) in THF (1.00 mL) was added o-nitrophenylselenocyanide (15.1 mg, 66.7 µmol) and ⁿBu₃P (13.8 µL, 66.7 µmol) at room temperature. After being stirred for 0.5 h, the reaction mixture was concentrated. The residue was filtered through silica gel column chromatography (hexane/EtOAc, 4:1 v/v) to give the corresponding selenide (21.0 mg), as a yellow oil, which was used to the next reaction without further purification. To a stirred solution of selenide in THF (2.00 mL) was added 30% aqueous H₂O₂ (0.300 mL) at room temperature. After being stirred for 15 min at 60 °C, the reaction mixture was treated with saturated aqueous NaHCO₃ and extracted with Et₂O. The combined extracts were washed with brine, and the residue upon workup was chromatographed on silica gel with hexane/AcOEt (4:1 v/v) as eluent to afford diene 18 (4.60 mg, 47% for two steps) as a yellow oil; [α]_D³² +22.28 (*c* 0.78, CHCl₃); IR (neat) 2955, 1761, 1503, 1394, 1193, 1151, 1015 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 7.35–7.24 (5H, m), 6.91 (1H, s), 6.55 (1H, s), 6.06 (1H, ddd, J=5.6, 10.4, and 16.0 Hz), 5.96 (1H, ddt, J=6.0, 15.6, and 1.2 Hz), 5.68 (1H, ddt, J=1.6, 15.6, and 6.0 Hz), 5.60 (1H, dq, J=17.2 and 1.2 Hz), 5.40 (1H, dq, J=10.8 and 1.2 Hz), 5.11 (1H, d, J=6.4 Hz), 5.07 (1H, d, J=6.4 Hz), 5.06 (1H, dt, J=5.6 and 1.6 Hz), 4.04-4.01 (3H, m), 4.50 (2H, s), 3.75 (3H, s), 3.47 (3H, s), 2.19 (3H, s), 1.35 (3H, d, J=6.8 Hz); ¹³C NMR (100 MHz, CDCl₃) 170.3 (C), 150.3 (C), 149.1 (C), 138.4 (CH), 138.4 (C), 133.3 (C), 132.2 (CH), 128.2 (CH), 128.2 (CH), 127.7 (CH), 127.7 (CH), 127.4 (CH), 126.0 (C), 125.0 (CH), 118.9 (CH₂), 115.9 (CH), 114.7 (CH), 95.4 (CH₂), 78.7 (CH), 71.6 (CH₃), 70.9 (CH₂), 56.0 (CH₃), 52.4 (CH₃), 34.7 (CH), 19.8 (CH₃), 16.2 (CH₃); HRMS (ESI) m/z calcd for C₂₆H₃₂O₆Na [M+Na]⁺ 463.2097, found 463.2103.

4.1.10. (4R,2E)-4- $\{2-[(3R)$ -1-(*tert*-Butyldiphenylsilyloxy)-4-hydroxy-4-methylpentan-3-yloxy]-5-(methoxymethoxy)-4-methylphenyl} pent-2-en-1-ol (**20**). To a stirred solution of benzyl ether **13** (50.0 mg, 71.7 µmol) in THF (5.00 mL) was added solution of lithium di-*tert*-buthylbiphenilide (LiDBB) (1.45 M in THF, 0.500 mL, 0.717 mmol) at -78 °C. After being stirred for 3 min at -78 °C, the reaction mixture was treated with saturated aqueous NH₄Cl and extracted with AcOEt. The combined extracts were washed with brine, and the residue upon workup was chromatographed on silica gel hexane/AcOEt (2:1 v/v) as eluent to afford allyl alcohol **20** (39.6 mg, 91%) as a colorless oil; $[\alpha]_D^{25}$ –8.22 (*c* 1.06, CHCl₃); IR (neat) 3408, 2961, 1500, 1391, 1190, 1150, 1111, 1010 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 7.63 (2H, dd, *J*=1.2 and 6.4 Hz), 7.50 (2H, dd, *J*=1.2 and 6.4 Hz), 7.44–7.29 (6H, m), 6.97 (1H, s), 6.89 (1H, s), 5.82 (1H, dd, J=6.4 and 15.6 Hz), 5.60 (1H, dt, J=6.0 and 15.6 Hz), 5.12 (2H, t, J=1.2 Hz), 4.55 (1H, dd, J=3.2 and 8.4 Hz), 4.06 (2H, br m), 3.87 (1H, m), 3.71 (2H, m), 3.51 (3H, s), 2.13 (3H, s), 1.78–1.70 (1H, m), 2.63 (1H, br s, OH, D₂O exchangeable), 1.92–1.84 (1H, m), 1.79–1.70 (1H, m), 1.28 (3H, d, J=7.2 Hz), 1.26 (6H, s), 1.04 (9H, s); ¹³C NMR (100 MHz, CDCl₃) 151.2 (C), 149.4 (C), 137.7 (CH), 135.5 (CH), 135.5 (CH), 135.4 (CH), 135.4 (CH), 127.7 (CH), 127.6 (CH), 127.6 (CH), 126.4 (C), 115.3 (CH), 127.7 (CH), 95.6 (CH₂), 81.1 (CH), 73.2 (C), 63.5 (CH₂), 60.2 (CH₂), 56.0 (CH₃), 34.7 (CH), 34.1 (CH₂), 26.8 (CH₃), 26.8 (CH₃), 26.1 (CH₃), 24.8 (CH₃), 19.8 (CH₃), 19.1 (C), 16.1 (CH₃); HRMS (ESI) m/z calcd for C₃₆H₅₁O₆Si [M+H]⁺ 607.3455, found 607.3450.

4.1.11. (3R)-3-{2-[(2R,3E)-5-(Allyloxy)pent-3-en-2-yl-4-(methoxymethoxy)-5-methylphenoxy]-5-tert-butyldiphenylsilyloxy}-2methylpentan-2-ol (21). To a stirred solution of allyl alcohol 20 (349 mg, 0.575 mmol) in THF (2.50 mL) was added NaH (69.0 mg, 1.73 mmol) at 0 °C. After being stirred for 0.5 h, the resultant mixture was added allyl bromide (0.150 mL, 1.73 mmol) at 0 °C. The mixture was allowed to warm to room temperature, and then stirring was continued for 6 h at the same temperature. The resultant mixture was treated with H₂O and extracted with AcOEt. The combined extracts were washed with brine, and the residue upon workup was chromatographed on silica gel with hexane/ AcOEt (4:1 v/v) as eluent to afford diene 21 (360 mg, 99%) as a colorless oil; $[\alpha]_D^{25}$ +3.21 (*c* 1.00, CHCl₃); IR (neat) 3463, 2960, 1500, 1190, 1111, 1011, 703 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 7.62 (2H, d, J=6.4 Hz), 7.47 (2H, d, J=6.4 Hz), 7.44-7.28 (6H, m), 6.94 (1H, s), 6.87 (1H, s), 5.94–5.81 (2H, m), 5.54 (1H, dt, *J*=6.0 and 15.6 Hz), 5.25 (1H, dd, J=1.6 and 17.2 Hz), 5.16 (1H, dd, J=1.6 and 10.8 Hz), 5.12 (1H, d, J=10.8 Hz), 5.10 (1H, d, J=10.8 Hz), 4.55 (1H, dd, J=3.2 and 8.4 Hz), 3.94 (2H, d, J=8.8 Hz), 3.92 (2H, d, J=8.8 Hz), 3.87 (1H, m), 3.69 (2H, d, J=3.6 and 7.6 Hz), 3.50 (3H, s), 2.55 (1H, br s, OH, D₂O exchangeable), 2.13 (3H, s), 1.95-1.86 (1H, m), 1.79-1.72 (1H, m), 1.28–1.25 (9H, m), 1.02 (9H, s); ¹³C NMR (100 MHz, CDCl₃) 151.1 (C), 149.4 (C), 138.8 (CH), 135.5 (CH), 135.5 (CH), 135.4 (CH), 135.4 (CH), 134.8 (CH), 133.4 (C), 133.4 (C), 131.6 (C), 129.7 (CH), 129.5 (CH), 127.7 (CH), 127.7 (CH), 127.6 (CH), 127.6 (CH), 126.3 (C), 124.9 (CH), 116.9 (CH₂), 115.4 (CH), 114.6 (CH), 95.7 (CH₂), 81.2 (CH), 73.0 (C), 70.9 (CH₂), 70.7 (CH₂), 60.3 (CH₂), 56.0 (CH₃), 34.7 (CH), 34.0 (CH₂), 26.8 (CH₃), 26.8 (CH₃), 26.8 (CH₃), 26.1 (CH₃), 25.0 (CH₃), 19.8 (CH₃), 19.1 (C), 16.2 (CH₃); HRMS (ESI) *m*/*z* calcd for C₃₉H₅₅O₆Si [M+H]⁺ 647.3768, found 647.3771.

4.1.12. (3R)-3-{2-[(2R,3E)-5-(Allyloxy)pent-3-en-2-yl]-4-(methox*ymethoxy*)-5-*methylphenoxy*}4-*methyl-pentane-1*,4-*diol* (22). To a stirred solution of TBDPS ether 21 (33.5 mg, 53.1 µmol) in THF (3.00 mL) was added TBAF (1.00 M in THF, 60.0 µL, 58.4 µmol) at room temperature. After being stirred for 3 min at room temperature, the reaction mixture was treated with water and extracted with CH₂Cl₂. The combined extracts were washed with brine, and the residue upon workup was chromatographed on silica gel with hexane/AcOEt (3:2 v/v) as eluent to afford diol 22 (25.9 mg, quant.) as a colorless oil; $[\alpha]_D^{31}$ +5.72 (*c* 0.48, CHCl₃); IR (neat) 3398, 2966, 1500, 1190, 1150, 1011 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 6.86 (1H, s), 6.77 (1H, s), 5.95–5.84 (2H, m), 5.57 (1H, dt, J=6.4 and 15.6 Hz), 5.26 (1H, d, J=17.2 Hz), 5.17 (1H, d, J=10.4 Hz), 5.10 (2H, s), 4.33 (1H, t, J=5.6 Hz), 3.96-3.93 (4H, m), 3.85 (1H, dq, J=6.8 and 7.2 Hz), 3.80-3.75 (1H, m), 3.63-3.57 (1H, m), 3.49 (3H, s), 2.50 (2H, br s, OH, D₂O exchangeable), 2.21 (3H, s), 2.04–1.87 (2H, m), 1.33 (3H, d, J=7.2 Hz), 1.31 (3H, s), 1.29 (3H, s); ¹³C NMR (100 MHz, CDCl₃) 150.2 (C), 149.4 (C), 138.7 (CH), 134.7 (CH), 131.8 (C), 126.2 (C), 124.9 (CH), 117.0 (CH₂), 115.0 (CH), 114.8 (CH), 95.6 (CH₂), 81.2 (CH), 72.9 (C), 71.0 (CH₂), 70.7 (CH₂), 59.1 (CH₂), 56.0 (CH₃), 35.2 (CH), 32.9 (CH₂), 26.2 (CH₃), 25.8 (CH₃), 19.9 (CH₃), 16.3 (CH₃); HRMS (ESI) m/z calcd for C₂₃H₃₇O₆ [M+H]⁺ 409.2590, found 409.2580.

4.1.13. (3R)-3-{2-[(2R,3E)-5-(Allyloxy)pent-3-en-2-yl]-4-(methox*vmethoxy*)-5-*methylphenoxy*}-2-*methyl-pent*-4-*en*-2-*ol* (23). To a stirred solution of diol 22 (20.0 mg, 49.0 µmol) in THF (2.00 mL) was added o-nitrophenylselenocyanide (22.2 mg, 97.9 umol) and ⁿBu₃P (20.2 µL, 97.9 µmol) at 0 °C. After being stirred for 5 min at 0 °C, the reaction mixture was concentrated to give the corresponding selenide (28.7 mg), as a yellow oil, which was used to the next reaction without further purification. To a stirred solution of selenide in THF (2.00 mL) was added 30% aqueous H_2O_2 (80.0 μ L) at room temperature. After being stirred for 20 min at 60 °C, the reaction mixture was treated with saturated aqueous NaHCO₃ and extracted with Et₂O. The combined extracts were washed with brine, and the residue upon workup was chromatographed on silica gel with hexane/AcOEt (4:1 v/v) as eluent to afford triene 23 (11.8 mg, 62% for two steps) as a yellow oil; $[\alpha]_{D}^{25}$ -8.35 (c 1.11, CHCl₃); IR (neat) 3467, 2973, 1501, 1392, 1191, 1150 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 6.86 (1H, s), 6.63 (1H, s), 5.95-5.78 (3H, m), 5.56 (1H, dt, J=6.0 and 15.6 Hz), 5.33-5.23 (3H, m), 5.16 (1H, dd, J=1.2 and 10.4 Hz), 5.10 (2H, s), 4.37 (1H, d, J=7.2 Hz), 3.96-3.87 (5H, m), 3.48 (3H, s), 2.48 (1H, br s, OH, D₂O exchangeable), 2.19 (3H, s), 1.34 (3H, d, J=6.8 Hz), 1.30 (3H, s), 1.27 (3H, s); ¹³C NMR (100 MHz, CDCl₃) 149.7 (C), 149.5 (C), 138.7 (CH), 134.9 (CH), 134.3 (CH), 132.1 (C), 126.0 (C), 125.1 (CH), 119.7 (CH₂), 116.9 (CH₂), 116.2 (CH), 114.5 (CH), 95.7 (CH₂), 86.3 (CH), 72.5 (C), 71.0 (CH₂), 70.7 (CH₂), 56.0 (CH₃), 34.8 (CH), 25.7 (CH₃), 24.6 (CH₃), 19.9 (CH₃), 16.2 (CH₃); HRMS (ESI) m/z calcd for C₂₃H₃₅O₅ [M+H]⁺ 391.2484, found 391.2478.

4.1.14. 2-{(2R,5R)-7-(Methoxymethoxy)-5,8-dimethyl-2,5dihydrobenzo[b]oxepin}-2-ylpropan-2-ol (15). To a stirred solution of triene 23 (11.8 mg, 30.2 µmol) in degassed CH₂Cl₂ (10.0 mL) was added Grubbs' second-generation catalyst (1.30 mg, 1.51 µmol) at room temperature. After being stirred for 3 h at room temperature, the reaction mixture was concentrated and the residue was chromatographed on silica gel with hexane/AcOEt (3:2 v/v) as eluent to afford O-MOM heliannuol B (15) (9.40 mg, quant.) as a yellow oil; $[\alpha]_{D}^{31}$ –51.1 (c 0.35, CHCl₃); IR (neat) 3446, 2972, 1502, 1150, 1009 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 6.84 (1H, s), 6.78 (1H, s), 5.99 (1H, ddd, J=2.4, 7.6, and 12.0 Hz), 5.48 (1H, d, J=12.0 Hz), 5.15 (1H, d, J=11.2 Hz), 5.13 (1H, d, J=11.2 Hz), 4.07 (1H, br s, OH, D₂O exchangeable), 3.49 (3H, s), 3.20 (1H, m), 2.76 (1H, br s, OH, D₂O exchangeable), 2.19 (3H, s), 1.44 (3H, d, J=7.2 Hz), 1.32 (3H, s), 1.30 (3H, s); ¹³C NMR (100 MHz, CDCl₃) 151.8 (C), 151.0 (C), 137.9 (C), 134.0 (CH), 126.7 (C), 125.5 (CH), 123.9 (CH), 114.4 (CH), 95.1 (CH₂), 87.2 (CH), 72.3 (CH₃), 56.0 (CH), 40.0 (CH), 25.3 (CH₃), 24.7 (CH₃), 23.2 (CH₃), 15.8 (CH₃); HRMS (ESI) *m*/*z* calcd for C₁₇H₂₄O₄Na [M+Na]⁺ 315.1572, found 315.1561.

4.1.15. (–)-*Heliannuol B* (**1**). To a stirred solution of O-MOM heliannuol B (**15**) (5.00 mg, 1.71 µmol) in THF (0.400 mL) was added 6 M aqueous HCl (1.60 mL) at 0 °C. After being stirred for 0.5 h at 0 °C, the reaction mixture was extracted with Et₂O. The combined extracts were washed with water and brine, and the residue upon workup was chromatographed on silica gel with hexane/AcOEt (7:3 v/v) as eluent to afford heliannuol B (**1**) (4.24 mg, quant.) as a yellow oil; $[\alpha]_D^{25}$ –75.5 (*c* 1.10, CHCl₃); IR (neat) 3364, 2975, 1508, 1417, 1192, 844 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 6.81 (1H, s), 6.51 (1H, s), 5.97 (1H, ddd, *J*=1.2, 8.0, and 12.0 Hz), 5.49 (1H, dd, *J*=1.2 and 12.0 Hz), 4.81 (1H, br s, OH, D₂O exchangeable), 4.06 (1H, br s), 3.15 (1H, dq, *J*=7.5 and 7.5 Hz), 2.82 (1H, br s, OH, D₂O exchangeable), 2.19 (3H, s), 1.43 (3H, d, *J*=7.2 Hz), 1.32 (3H, s), 1.30 (3H, s); ¹³C NMR (100 MHz, CDCl₃) 150.2 (C), 150.0 (C), 138.3 (C), 133.9 (CH), 125.6 (CH), 124.0 (CH), 122.7 (C), 114.8 (CH), 87.3 (CH), 72.5 (C), 39.7 (CH),

25.3 (CH₃), 24.7 (CH₃), 23.2 (CH₃), 15.4 (CH₃); HRMS (ESI) *m*/*z* calcd for C₁₅H₂₁O₃ [M+H]⁺ 249.1491, found 249.1506.

4.1.16. (+)-Heliannuol D (2). A suspension of heliannuol B (1) (4.00 mg, 1.61 µmol) and Pd-C (0.400 mg, 10% w/w) in AcOEt (2.00 mL) was stirred under 1 atm of hydrogen gas. After being stirred for 2.5 h at room temperature, the reaction mixture was filtered through a pad of Celite and concentrated. The residue was chromatographed on silica gel with hexane/AcOEt (3:2 v/v) as eluent to afford alcohol 16 (3.80 mg, 94%) as a colorless oil; mp 157–158 °C (lit.^{5f,h} 161–162 °C); $[\alpha]_D^{25}$ +18.2 (*c* 0.75, CHCl₃); IR (neat) 3365, 2931, 1508, 1417, 1192, 1020 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 6.73 (1H, s), 6.54 (1H, s), 4.55 (1H, br s, OH, D₂O exchangeable), 3.30 (1H, d, *J*=10.8 Hz), 2.90 (1H, br s), 2.70 (1H, br s, OH, D₂O exchangeable), 2.16 (3H, s), 2.09–1.99 (1H, m), 1.92–1.88 (1H, m), 1.79–1.70 (2H, m), 1.28 (3H, d, *J*=7.2 Hz), 1.28 (6H, s); ¹³C NMR (125 MHz, CDCl₃) 151.7 (C), 149.6 (C), 138.1 (C), 123.5 (CH), 122.1 (C), 115.8 (CH), 90.5 (CH), 72.7 (C), 38.5 (CH), 31.8 (CH₂), 26.1 (CH₂), 25.5 (CH₃), 24.4 (CH₃), 18.6 (CH₃), 15.3 (CH₃); HRMS (ESI) m/z calcd for C₁₅H₂₃O₃ [M+H]⁺ 251.1647, found: 251.1643.

Acknowledgements

This work was financially supported by a Grant-in-Aid from the Ministry of Education, Science, Sports, Culture and Technology, Japan and from the Program for the Promotion of Basic and Applied Research for Innovation in the Bio-oriented Industry (BRAIN).

Supplementary data

Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.tet.2013.11.070. These data include MOL files and InChiKeys of the most important compounds described in this article.

References and notes

- Macías, F. A.; Molinillo, J. M. G.; Varela, R. M.; Torres, A.; Fronczek, F. R. J. Org. Chem. 1994, 59, 8261–8266.
- Takabatake, K.; Nishi, I.; Shindo, M.; Shishido, K. J. Chem. Soc., Perkin Trans. 1 2000, 1807–1808.
- Macías, F. A.; Varela, R. M.; Torres, A.; Molinillo, J. M. G. J. Chem. Ecol. 2000, 26, 2173–2186.
- 4. Heliannuol B: for an enantioselective synthesis, see: (a) Zhang, J.; Wang, X.; Wang, W.; Quan, W.; She, X.; Pan, X. Tetrahedron 2007, 63, 6990–6995 for a racemic synthesis, see: (b) Roy, A.; Biswas, B.; Sen, P. K.; Venkateswaran, R. V. Tetrahedron Lett. 2007, 48, 6933–6936.
- Heliannuol D: for enantioselective syntheses, see: (a) Kishuku, H.; Yoshimura, T.; Kakehashi, T.; Shindo, M.; Shishido, K. *Heterocycles* 2003, 61, 125–131; (b) Osaka, M.; Kanematsu, M.; Yoshida, M.; Shishido, K. *Tetrahedron: Asymmetry* 2010, 21, 2319–2320; (c) Li, J.-Q.; Quan, X.; Anderson, P. G. *Chem.-Eur. J.* 2012, 18, 10609–10616; (d) Manabe, Y.; Kanematsu, M.; Osaka, M.; Yoshida, M.; Shishido, K. *Heterocycles* 2014, 88, http://dx.doi.org/10.3987/COM-13-S(S)50 in press; (e) See also Refs. 3 and 4a; for racemic syntheses, see: (f) Vyvyan, J. R.; Looper, R. E. *Tetrahedron Lett.* 2000, 41, 1151–1154; (g) Tuhina, K.; Bhovmik, D. R.; Venkateswaran, R. V. *Chem. Commun.* 2002, 634–635; (h) Macías, F. A.; Chinchilla, D.; Molinillo, J. M. G.; Marín, D.; Varela, R. M.; Torres, A. *Tetrahedron* 2003, 59, 1679–1683; (i) Doi, F.; Ohta, T.; Ogamino, T.; Sugai, T.; Higashinakasu, K.; Yamada, K.; Shigemori, H.; Hasegawa, K.; Nishiyama, S. *Phytochemistry* 2004, 65, 1405–1411; (j) Sabui, S. K.; Venkateswaran, R. V. *Tetrahedron Lett.* 2004, 45, 983–985; (k) Sabui, S. K.; Venkateswaran, R. V. *Tetrahedron Lett.* 2004, 45, 983–985; (k) Sabui, S. K.; Venkateswaran, R. V. *Tetrahedron Lett.* 2004, 45, 983–985; (k) Sabui, S. K.; Venkateswaran, R. V. *Tetrahedron Lett.* 2004, 45, 983–985; (k) Sabui, S. K.; Venkateswaran, R. V. *Tetrahedron Lett.* 2004, 45, 983–985; (k) Sabui, S. K.; Venkateswaran, R. V. *Tetrahedron Lett.* 2004, 45, 983–985; (k) Sabui, S. K.; Venkateswaran, R. V. *Tetrahedron Lett.* 2004, 45, 983–985; (k) Sabui, S. K.; Venkateswaran, R. V. *Tetrahedron Lett.* 2004, 45, 983–985; (k) Sabui, S. K.; Venkateswaran, R. V. *Tetrahedron Lett.* 2004, 45, 984–2048; (I) Osaka, M.; Kanematsu, M.; Yoshida, M.; Shishido, K. *Heterocycles* 2010, 80, 1003–1012.
- Kanematsu, M.; Soga, K.; Manabe, Y.; Morimoto, S.; Yoshida, M.; Shishido, K. Tetrahedron 2011, 67, 4758–4766 and references cited therein.
- 7. Pan et al.^{4a} and Venkateswaran, et al.^{4b} have demonstrated independently the RCM strategy for the construction of the dihydrobenzo[*b*]oxepine skeleton of heliannuol B using the substrate with two terminal alkenes (monosubstituted alkenes).
- 8. Hayashi, Y.; Yamaguchi, J.; Shoji, M. Tetrahedron 2002, 58, 9839–9846.
- For reviews, see: (a) Mitsunobu, O. Synthesis 1981, 1–28; (b) Hughes, D. L. Org. React. 1992, 42, 335–656; (c) Hughes, D. L. Org. Prep. Proced. Int. 1996, 28, 127–164; (d) Tsunoda, T.; Itô, S. J. Synth. Org. Chem. Jpn. 1997, 55, 631–641.
- 10. Yamazaki, Y.; Araki, T.; Koura, M.; Shibuya, K. Tetrahedron 2008, 64, 8155–8158.
- 11. Grieco, P. A.; Gilman, S.; Nishizawa, M. J. Org. Chem. 1976, 41, 1485–1486.

- 12. (a) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953–956; (b) Chatterjee, A. K.; Morgan, J. P.; Scholl, M.; Grubbs, R. H. J. Am. Chem. Soc. 2000, 122, 3783–3784; (c) Trnka, T.; Grubbs, R. H. Acc. Chem. Res. **2001**, 34, 18–29.
- 13. We also tried Grubbs' first-generation catalyst, but the reaction did not proceed at all.
- 14. (a) Hoye, T. R.; Jeffrey, C. S.; Tennakoon, M. A.; Wang, J.; Zhao, H. J. Am. Chem. Soc. 2004, 126, 10210–10211; (b) Wallace, D. J. Angew. Chem., Int. Ed. 2005, 44, 1912–1915; (c) Wang, X.; Bowman, E. J.; Bowman, B. J.; Porco, J. A., Jr. Angew. Chem, Int. Ed. **2004**, 43, 3601–3605; (d) Roethle, P. A.; Chen, I. T.; Trauner, D. J. Am. Chem. Soc. **2007**, 129, 8960–8961; (e) Marvin, C. C.; Voight, E. A.; Suh, J. M.; Paradise, C. L.; Burke, S. D. J. Org. Chem. **2008**, 73, 8452–8457; (f) Li, J.; Park, S.; Miller, R. L.; Lee, D. Org. Lett. **2009**, 11, 571–574; (g) Druais, V.; Hall, M. J.; Corsi,

C.; Wendeborn, S. V.; Meyer, C.; Cossy, J. Org. Lett. 2009, 11, 935–938; (h) Hoye, T. R.; Jeon, J.; Kopel, L. C.; Ryba, T. D.; Tennakoon, M. A.; Wang, Y. Angew. Chem., *Int. Ed.* **2010**, 49, 6151–6155; (i) Druais, V.; Hall, M. J.; Corsi, C.; Wendeborn, S. V.; Meyer, C.; Cossy, J. Tetrahedron 2010, 66, 6358-6375; (j) Schwartz, K. D.; V., Mcyel, C., Cossy, J. *leutilieuron* 2010, 60, 6538–6575, (J) Schwatz, K. D., White, J. D. Org. *Lett.* 2011, 13, 248–251; (k) Taber, D. F.; Bai, S.; Tiab, W. J. Org. *Chem.* 2011, 76, 9733–9737; (I) Fujioka, K.; Yokoe, H.; Yoshida, M.; Shishido, K. Org. *Lett.* 2012, 14, 244–247; (m) Lee, J.; Parker, K. A. Org. *Lett.* 2012, 14, 2682–2685; (n) Wei, H.; Qiao, C.; Liu, G.; yang, Z.; Li, C.-C. Angew. Chem., Int. Ed. 2013, 52, 620-624.

- Donohoe, T. J.; House, D. J. Org. Chem. 2002, 67, 5015–5018.
 The phenol 9 was prepared from 3-methyl-4-(methoxymethoxy) phenol in 71% yield for the two steps as described in Refs. 5d and 6.