

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry

journal homepage: www.elsevier.com/locate/bmc

Synthesis and biological evaluation of new 2-alkylaminoethyl-1,1-bisphosphonic acids against *Trypanosoma cruzi* and *Toxoplasma gondii* targeting farnesyl diphosphate synthase

Valeria S. Rosso^{a,b}, Sergio H. Szajnman^a, Leena Malayil^b, Melina Galizzi^b, Silvia N. J. Moreno^b, Roberto Docampo^b, Juan B. Rodriguez^{a,*}

^a Departamento de Química Orgánica and UMYMFOR (CONICET–FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina

^b Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA

ARTICLE INFO

Article history: Received 11 January 2011 Revised 16 February 2011 Accepted 18 February 2011

Keywords: Trypanosoma cruzi Chagas' disease Farnesyl pyrophosphate synthase Toxoplasma gondii Toxoplasmosis

ABSTRACT

The effect of long-chain 2-alkylaminoethyl-1,1-bisphosphonates against proliferation of the clinically more relevant form of *Trypanosoma cruzi*, the etiologic agent of American trypanosomiasis (Chagas' disease), and against tachyzoites of *Toxoplasma gondii* was investigated. Particularly, compound **26** proved to be an extremely potent inhibitor against the intracellular form of *T. cruzi*, exhibiting IC₅₀ values at the nanomolar range. This cellular activity was associated with a strong inhibition of the enzymatic activity of *T. cruzi* farnesyl diphosphate synthase (*TcFPPS*), which constitutes a valid target for Chagas' disease chemotherapy. Compound **26** was an effective agent against *T. cruzi* (amastigotes) exhibiting an IC₅₀ value of 0.67 μ M, while this compound showed an IC₅₀ value of 0.81 μ M against the target enzyme *TcFPPS*. This drug was less effective against the enzymatic activity of *T. cruzi* solanesyl diphosphate synthase *TcSPPS* showing an IC₅₀ value of 3.2 μ M. Interestingly, compound **26** was also very effective against *T. gondii* (tachyzoites) exhibiting IC₅₀ values of 6.23 μ M. This cellular activity was also related to the inhibition of the enzymatic activity towards the target enzyme *TgFPPS* (IC₅₀ = 0.093 μ M) As bisphosphonate-containing compounds are FDA-approved drugs for the treatment of bone resorption disorders, their potential low toxicity makes them good candidates to control different tropical diseases.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The hemoflagellated protozoan parasite *Trypanosoma cruzi* is the etiological agent of Chagas' disease or American trypanosomiasis, which is an endemic disease widespread from southern United States to southern Argentina. It has been estimated that close to 18 million people are infected and over 40 million are at risk of infection by *T. cruzi*.¹ The central nervous system is the most frequently affected site in patients with AIDS, with meningoencephalitis occurring approximately in 75% of cases. The next normally affected organ is the heart with myocarditis.

In addition, since people migrate from endemic areas, the possibility for cases in developed nations will also escalate. Chemotherapy for Chagas' disease still remains unsatisfactory due to limited efficacy and common side effects of the currently available drugs such as nifurtimox (1), now discontinued, and benznidazole (2), which present toxicity associated with their continued use.^{2–4}

* Corresponding author. *E-mail address:* jbr@qo.fcen.uba.ar (J.B. Rodriguez).

The parasite has a complex life cycle involving blood-sucking Reduviid insects and mammals.⁵ It multiplies in the insect gut as an epimastigote form and is spread as a non-dividing metacyclic trypomastigote from the insect feces by contamination of intact mucosa or wounds produced by the blood-sucking activity of the vector. In the mammalian host, T. cruzi multiplies intracellularly as the amastigote form and is subsequently released into the bloodstream as a non-dividing trypomastigote.⁵ Transmission of Chagas' disease could also occur via the placenta or by blood transfusion.⁶ This latter mechanism is responsible for the occurrence of Chagas' disease in developed countries where the disease is not endemic.^{6,7} For this reason, it is very important to have an efficient agent to eradicate the bloodstream trypomastigotes from blood banks as well. Crystal violet (3), the only drug employed for blood sterilization and discovered for that purpose some decades ago,⁸ suffers from some disadvantages, since it was shown to be carcinogenic in in vivo assays (Fig. 1).9

Different enzymes involved in the biosynthesis of ergosterol¹⁰ and farnesyl diphosphate,^{11,12} and in protein prenylation,¹³ have been reported to be excellent targets against pathogenic parasites. Farnesyl diphosphate synthase of *T. cruzi* (*TcFPPS*), for example, has been demonstrated to be the target of bisphosphonates that have

Figure 1. Current drugs for the treatment of Chagas' disease and blood sterilization.

activity in vitro and in vivo against *T. cruzi*.¹⁴ The gene encoding this enzyme has been cloned and sequenced and the protein expressed and biochemically characterized.^{14,15} In addition, the crystal structure of *Tc*FPPS at 2 Å resolution have been published.¹⁶ Moreover, solanesyl diphosphate synthase, another important pre-nyltransferase in *T. cruzi* (*Tc*SPPS), which is involved in the synthesis of ubiquinone, is another potential target for chemotherapy.¹⁷

Geminal phosphonates are pyrophosphate analogues in which a methylene group replaces the oxygen atom bridge between the two phosphorus atoms of the pyrophosphate moiety. The substitution of carbon with different side chains has given rise to a large family of compounds. Unlike pyrophosphate, bisphosphonates possess better metabolic stability because they are not recognized by pyrophosphatases and are also stable to hydrolysis under acidic media. Several bisphosphonates are potent inhibitors of bone resorption and are in clinical use for the treatment and prevention of osteoporosis, Paget's disease, hypercalcemia, tumor bone metastases, and other bone diseases.^{18,19} Selective action on bone is based on the binding of the bisphosphonate moiety to the bone mineral.^{18,19} It has been postulated that the acidocalcisomes are equivalent in composition to the bone mineral and that accumulation of bisphosphonates in these organelles, as they do in bone mineral, assists their antiparasitic action.²⁰ Representative bisphosphonates, such as pamidronate (4), alendronate (5), risedronate (6), and ibandronate (7), act by a mechanism that lead to osteoclast apoptosis (Fig. 2).²¹ The site of action of aminobisphosphonates has been narrowed down to the isoprenoid pathway and more specifically, to an inhibition of protein prenylation.22

2. Rationale

Aminobisphosphonates were initially found to be potent inhibitors of *T. cruzi* proliferation in vitro and in vivo without toxicity to the host cells.²³ Lately, different bisphosphonates were found to be effective growth inhibitors of pathogenic trypanosomatids other

Figure 2. Chemical structure of representative FDA-approved bisphosphonates clinically employed for different bone disorders.

than *T. cruzi*, such as *T. brucei rhodesiense*, *Leishmania donovani*, and *Leishmania mexicana* and Apicomplexan parasites such as *Toxoplasma gondii* and *Plasmodium falciparum*.^{20,24–30} In vivo assays of bisphosphonates have shown that risedronate can significantly increase survival of *T. cruzi*-infected mice.³¹ In view of the above results, it is possible to assume that bisphosphonates are potential candidates for chemotherapy of neglected diseases. In addition, bisphosphonates have the advantage that their synthesis is straightforward and inexpensive. It is reasonable to assume a low toxicity for bisphosphonate compounds are FDA-approved drugs for the long-term treatment of several bone disorders.

Of special interest are 2-alkylaminoethyl-1,1-bisphosphonates derived from fatty acids, which were shown to be potent growth inhibitors against the clinically more relevant form of T. cruzi exhibiting IC₅₀ values at the nanomolar range.²⁶ This class of bisphosphonates has proven to be more efficient than 1-hvdroxyand 1-amino-bisphosphonates as antiparasitic agents.²⁶ Compound 8 (Fig. 3) appears as the main member of bisphosphonates derived from fatty acids,^{26–31} with an IC₅₀ value of 0.84 μ M.²⁶ This cellular activity is associated with the inhibition of the enzymatic activity of the target enzyme *Tc*FPPS,²⁶ being a competitive inhibitor²⁸ with an IC_{50} value of 0.49 μ M.²⁶ The scope of this type of bisphosphonates is very broad, because compound 8 also inhibits the enzymatic activity of *T. gondii* FPPS ($IC_{50} = 0.14 \mu M$),²⁶ and exhibits in vitro inhibitory action against tachyzoites of *T. gondii* (IC_{50} = 9.37 μ M).²⁶ As it was mentioned before, the target of 2-alkylaminoethyl-1,1-bisphosphonates is FPPS and to a lesser extent, SPPS. Previous studies have indicated that selectivity towards SPPS increases as the chain length increases.²⁶ In fact, compound **8** exhibits $IC_{50} = 1.35 \mu M$ towards TcSPPS, while compound 10 presents IC₅₀ values of 1.01 µM and 0.25 µM against FPPS and SPPS, respectively.²⁶

We have demonstrated that 2-alkylaminoethyl-1,1-bisphosphonates were by far more potent than the parent compounds 1-aminoalkyl-, 1-hydroxyalkyl-, and 1-alkyl-1,1-bisphosphonates.²⁶ The 2-alkylaminoethyl-1.1-bisphosphonate derivatives are isosteric analogues of 1-alkyl-1.1-bisphosphonates, in which an amino group replaces the methylene group at the C-3 position. These aminobisphosphonates were originally designed in order to maintain the ability to coordinate Mg²⁺ in a tridentate manner as 1-hydroxy-and 1-amino- derivatives do.²⁶ However, preliminary studies on the interaction of inhibitor **9** (IC₅₀ = 58 nM) with *Tc*FPPS based on the X-ray crystallographic structure of 9-TcFPPS have indicated that the nitrogen atom did not coordinate³² the with Mg²⁺ present at the active site of the target enzyme.^{33,34} The tridentate coordination structure is circumvented to the hydroxyl groups bonded to the phosphorus atoms either for 2-alkylaminoethyl- or 1-hydroxy-1,1-bisphosphonates.^{35,36} In addition, the X-ray structure of the complex of risedronate with TcFPPS indicated that the residue Asp250 forms a hydrogen bond with the hydroxyl group present at the C-1 position of the molecule of risedronate, fact not possible with the 2-aminoalkyl derivatives.^{16,26} Taking into account the above results, it would seem of

Figure 3. Representative members of 1-[2-(alkylamino)ethyl] 1,1-bisphosphonic acid derivatives.

interest to carry out chain length variations on compound **8** taken as a reference structure (Fig. 3). Base on our previous work,²⁶ the resulting 1-[2- (alkylamino)ethyl] bisphosphonates were evaluated against both *T. cruzi* and *T. gondii* cells and towards their target enzymes *Tc*FPPS, *Tc*SPPS, and *Tg*FPPS.

3. Results and discussion

The title compounds 22-29 were straightforwardly prepared employing tetraethyl ethenylidenebisphosphonate (compound **13**) as a Michael acceptor.³⁷ which in turn was easily prepared from tetraethyl methylenebisphosphonate (compound 12) in two steps according to a slightly modified Degenhardt protocol.^{38,39} Then, compound **13** was reacted with the corresponding *n*-alkylamine via a 1,4-conjugated addition reaction to afford the respective Michael adducts (14-21). Once these synthetic precursors were available, they were hydrolyzed by treatment with bromotrimethvlsilane in methylene chloride⁴⁰ to afford the free bisphosphonic acids (22-29). The synthesis of this new 2-alkylaminoethyl gembisphosphonates is presented in Scheme 1. Compounds 22-29 were evaluated as growth inhibitors against the amastigote form of T. cruzi, the clinically more relevant form of the parasite. Benznidazole, a well-known T. cruzi inhibitor, was used as a positive control.⁴¹ In addition, the correlation of the cellular activity with the action against its target enzyme (TcFPPS) as well as TcSPPS was studied. Besides, based on previous studies on structurally related bisphosphonates against the opportunistic pathogen *T. gondii*,^{30,42} this series of new aminobisphosphonic acids was evaluated against T. gondii and its target enzyme TgFPPS.

Compound **26** resulted to be an extremely potent growth inhibitor against the clinically more relevant form of *T. cruzi* exhibiting an IC₅₀ value of 0.67 μ M, significantly more potent than benznidazole taken as positive control (IC₅₀ = 2.77 μ M). This cellular activity was associated with the inhibition of the enzymatic activity towards the target enzyme TcFPPS possessing an IC₅₀ value of 0.81 µM. Compounds 25 and 28 were also potent growth inhibitors of T. cruzi (amastigotes) with IC50 values of 5.13 and 2.19 µM, respectively. The inhibition of the enzymatic activity of 25 towards the target enzyme qualitatively correlated with their inhibitory action against growth of amastigotes of *T. cruzi* as well. Interestingly, compound 26 did not exhibit superior inhibitory action against *Tc*SPPS as might be expected by its chain length having an IC₅₀ value of 3.18 µM. Compound **26** was not only a potent antiparasitic agent against T. cruzi, but also against the opportunistic parasite T. gondii. Certainly, this drug exhibited an extremely potent inhibition of the enzymatic activity of TgFPPS at the low nanomolar range (IC₅₀ = 93 nM), efficacy comparable with risedronate $(IC_{50} = 74 \text{ nM})$. This enzymatic activity correlated well with the cellular activity exerted by this compound against tachyzoites of *T.* gondii ($IC_{50} = 6.23 \text{ uM}$). Compound **24**. in spite of being a potent inhibitor of the enzymatic activity of TgFPPS at the low nanomolar range (IC₅₀ = 68 nM), was practically devoid of antiparasitic activity against T. gondii cells (Table 1).

It can be concluded that long-chain analogues of 2-alkylaminoethyl-1,1-bisphosphonates such as compound **26** were of the great effectiveness against both *T. cruzi* and the target enzyme *Tc*FPPS. The designed compounds maintained the ability of the lower members of this family of compounds as antiparasitic agents. Compound **26** arose as the main member of these new set of drugs. Surprisingly, it was not possible to establish a biological activity/chain length relationship. In fact, compound **8** with a linear 6-carbons in its structure exhibited similar cellular and enzymatic than **26**. Most of the synthetic drugs proved to be inhibitors of the enzymatic activity of *Tc*SPPS but to a lesser extent than *Tc*FPPS. Finally, some of these 1-[2-(alkylamino)ethyl] bisphosphonic acids were shown to be effective anti-*T. gondii* agents indicating the broad scope of

Scheme 1.

Compd	IC ₅₀ (μM)				
	TcFPPS	TgFPPS	TcSPPS	T. cruzi amastigotes	T. gondii tachyzoites
22	>1		>10	>10	>10
23	0.430 ± 0.088	0.440 ± 0.070	_	>10	>10
24	>1	0.068 ± 0.036	>10	>10	>10
25	0.856 ± 0.137	0.868 ± 0.545	3.081 ± 0.5896	5.126 ± 1.915	>10
26	0.811 ± 0.226	0.093 ± 0.024	3.182 ± 1.0544	0.670 ± 0.086	6.23
27	>1	0.292 ± 0.170	_	>10	11.27
28	_	_		2.189 ± 0.325	4.13
29	_	_	_	>10	5.29
Risedronate	0.027 ± 0.003	0.074 ± 0.017	_	_	
10	_		0.272 ± 0.037	_	
Benznidazole	-		-	2.768 ± 0.488	

this family of compounds. Work aimed at optimizing the chemical structure of 1-(3-azaalkyl)-1,1-bisphosphonic acids such as compound **26** and other closely related analogues is currently being pursued in our laboratory.

4. Experimental section

4.1. General

The glassware used in air- and/or moisture-sensitive reactions was flame-dried and reactions were carried out under an argon atmosphere. Unless otherwise noted, chemicals were commercially available and used without further purification. Solvents were distilled before use. Dichloromethane was distilled from phosphorus pentoxide. Nuclear magnetic resonance spectra were recorded with a Bruker AM-500 MHz spectrometer. The ¹H NMR spectra are referenced with respect to the residual CHCl₃ proton of the solvent CDCl₃ at δ = 7.26 ppm. Coupling constants are reported in Hertz. ¹³C NMR spectra were fully decoupled and are referenced to the middle peak of the solvent CDCl₃ at δ = 77.0 ppm. ³¹P NMR spectra are referenced with respect to the peak of 85% H₃PO₄ as external reference. Splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quadruplet; dd, double doublet, etc. Melting points were determined with a Fisher-Johns apparatus and are uncorrected. IR spectra were recorded with a Nicolet Magna 550 spectrometer. Analytical TLC was performed on commercial 0.2 mm aluminum-coated silica gel plates (F₂₅₄) and visualized by 254 nm UV or immersion in an aqueous solution of (NH₄)₆Mo₇O₂₄·4H₂O (0.04 M), Ce(SO₄)₂ (0.003 M) in concentrated H_2SO_4 (10%). Elemental analyses were conducted by UMYMFOR (CONICET-FCEyN). The results were within ±0.4% of the theoretical values.

4.2. Synthesis of 1-[2-alkylaminoethyl]-1,1-bisphosphonic acids

4.2.1. General procedure

A solution of compound 13 (10 mmol) in anhydrous methylene chloride (10 mL) was treated with the corresponding amine (10 mmol) under an argon atmosphere. The reaction mixture was stirred at room temperature overnight. The solvent was evaporated and the residue was purified by column chromatography (silica gel) employing hexane–EtOAc (17:3) as eluent for all compounds. Then, to a solution of the resulting tetraethyl ester (**14–21**, 1 equiv) in anhydrous methylene chloride was added dropwise trimethylsilyl bromide (10 equiv) in an argon atmosphere. The reaction mixture was stirred at room temperature for 48 h. After cooling at 0 °C, anhydrous methanol (10 mL) was added, and the resulting mixture was allowed to reach room temperature. The solution was then concentrated under reduced pressure. The residue was dissolved in dry methanol (10 mL) and subsequently concentrated under reduced pressure twice. The solvent was evaporated and the residue was crystallized from ethanol-water.

4.2.2. Tetraethyl 1-[(benzylamino)ethyl] 1,1-bisphosphonate (14)

Colorless oil; IR (film, cm⁻¹) 3425, 2982, 2932, 2905, 1639, 1626, 1456, 1391, 1215, 1049, 951, 795, 750, 700; ¹H NMR (500.13 MHz, CDCl₃) δ 1.32 (t, *J* = 7.0 Hz, 12H, H-2'), 2.67 (tt, *J* = 23.6, 5.7 Hz, 1H, H-1), 3.16 (dt, *J* = 16.9, 5.6 Hz, 2H, H-2), 3.81 (s, 2H, H-4), 4.17 (m, 8H, H-1'), 7.34 (m, 5H, aromatic protons); ¹³C NMR (125.77 MHz, CDCl₃) δ 16.4 (d, *J* = 3.8 Hz, C-2'), 37.7 (t, *J* = 132.5 Hz, C-1), 45.0 (t, *J* = 4.3 Hz, C-2), 53.2 (C-4), 62.7 (dd, *J* = 31.5, 6.6 Hz, C-1'), 126.9 (Ph), 128.1 (Ph), 128.4 (Ph), 139.9 (Ph); ³¹P NMR (202.46 MHz, CDCl₃) δ 22.66. HRMS (ESI) Calcd for (C₁₇H₃₂NO₆P₂) [M+H]⁺: 408.1705; found 408.1684.

4.2.3. Tetraethyl 1-[(*n*-non-1-ylamino)ethyl] 1,1-bisphosphonate (15)

Colorless oil; ¹H NMR (500.13 MHz, CDCl₃) δ 0.85 (t, *J* = 7.0 Hz, 3H, H-12), 1.22 (m, 12H, $-CH_{2}-$), 1.32 (t, *J* = 7.1 Hz, 12H, H-2'), 1.44 (p, *J* = 7.2 Hz, 2H, H-5), 2.54 (t, *J* = 7.2 Hz, 2H, H-4), 2.62 (tt, *J* = 23.6, 6.0 Hz, 1H, H-1), 3.10 (dt, *J* = 16.7, 5.9 Hz, 2H, H-2), 4.16 (m, 8H, H-1'); ¹³C NMR (125.77 MHz, CDCl₃) δ 14.0 (C-12), 16.3 (dd, *J* = 6.4, 2.7 Hz, C-2'), 22.6 (C-11), 26.8 (C-6), 27.3 (C-7), 29.2 (C-8), 29.5 (C-10), 29.9 (C-9), 31.8 (C-5), 37.4 (t, *J* = 132.2 Hz, C-1), 45.7 (t, *J* = 4.1 Hz, C-2), 49.2 (C-4), 62.6 (dd, *J* = 32.3, 6.8 Hz, C-1'); ³¹P NMR (202.46 MHz, CDCl₃) δ 22.78.

4.2.4. Tetraethyl 1-[(*n*-dec-1-ylamino)ethyl] 1,1-bisphosphonate (16)

Colorless oil; IR (film, cm⁻¹) 3444, 3332, 2972, 2956, 2925, 2854, 1649, 1569, 1467, 1392, 1369, 1247, 1164, 1026, 970, 798, 532; ¹H NMR (500.13 MHz, CDCl₃) δ 0.88 (t, *J* = 7.0 Hz, 3H, H-13), 1.23 (m, 14H, $-CH_2-$), 1.35 (t, *J* = 7.1 Hz, 12H, H-2'), 1.47 (p, *J* = 7.1 Hz, 2H, H-5), 2.57 (t, *J* = 7.2 Hz, 2H, H-4), 2.65 (tt, *J* = 23.5, 5.9 Hz, 1H, H-1), 3.12 (dt, *J* = 16.5, 5.9 Hz, 2H, H-2), 4.16 (m, 8H, H-1'); ¹³C NMR (125.77 MHz, CDCl₃) δ 14.1 (C-13), 16.3 (dd, *J* = 6.4, 2.7 Hz, C-2'), 22.6 (C-12), 26.8 (C-9), 27.3 (C-6), 29.3 (C-10), 29.5 (C-8), 29.5 (C-7), 29.9 (C-11), 31.9 (C-5), 37.4 (t, *J* = 132.2 Hz, C-1), 45.7 (t, *J* = 4.0 Hz, C-2), 49.2 (C-4), 62.6 (dd, *J* = 31.3, 6.8 Hz, C-1'); ³¹P NMR (202.46 MHz, CDCl₃) δ 22.75. HRMS (ESI) Calcd for (C₂₀H₄₆NO₆P₂) [M+H]⁺: 458.2800; found: 458.2813.

4.2.5. Tetraethyl 1-[(*n*-undec-1-ylamino)ethyl] 1,1bisphosphonate (17)

Colorless oil; IR (film, cm⁻¹) 3433, 2926, 2854, 1639, 1468, 1391, 1219, 1053, 951, 797; ¹H NMR (500.13 MHz, CDCl₃) δ 0.88 (t, *J* = 6.9 Hz, 3H, H-14), 1.26 (m, 16H, $-CH_2-$), 1.35 (t, *J* = 7.1 Hz, 12H, H-2'), 1.46 (p, *J* = 7.5 Hz, 2H, H-5), 2.57 (t, *J* = 7.2 Hz, 2H, H-4), 2.65 (tt, *J* = 23.1, 5.7 Hz, 1H, H-1), 3.13 (dt, *J* = 16.6, 5.9 Hz, 2H, H-2), 4.18 (m, 8H, H-1'); ¹³C NMR (125.77 MHz, CDCl₃) δ 14.1 (C-14), 16.4 (dd, *J* = 6.4, 2.8 Hz, C-2'), 22.7 (C-13), 26.9 (C-10), 27.3 (C-6), 29.3 (C-11), 29.5 (C-8), 29.6 (C-7), 29.9 (C-12), 31.9 (C-5), 33.5, 37.5 (t, *J* = 132.6 Hz, C-1), 45.8 (t, *J* = 4.1 Hz, C-2), 49.3 (C-4), 62.6 (dd, *J* = 31.8, 7.3 Hz, C-1'); ³¹P NMR (202.46 MHz, D₂O-d₆) δ 22.79.

4.2.6. Tetraethyl 1-[(*n*-dodec-1-ylamino)ethyl] 1,1-bisphosphonate (18)

Colorless oil; IR (film, cm⁻¹) 3450, 2924, 2854, 1468, 1391, 1221, 1053, 953, 797, 559; ¹H NMR (500.13 MHz, CDCl₃) δ 0.83 (t, *J* = 7.0 Hz, 3H, H-15), 1.21 (m, 18H, $-CH_2-$), 1.30 (t, *J* = 7.1 Hz, 12H, H-2'), 1.42 (p, *J* = 7.1 Hz, 2H, H-5), 2.53 (t, *J* = 7.2 Hz, 2H, H-4), 2.64 (tt, *J* = 23.5, 5.9 Hz, 1H, H-1), 3.10 (dt, *J* = 16.5, 5.8 Hz, 2H, H-2), 4.16 (m, 8H, H-1'); ¹³C NMR (125.77 MHz, CDCl₃) δ 14.0 (C-15), 16.3 (dd, *J* = 6.4, 2.7 Hz, C-2'), 22.6 (C-14), 26.8 (C-11), 27.3 (C-6), 29.3 (C-12), 29.5 (C-8), 29.6 (C-7), 29.9 (C-13), 31.8 (C-5), 37.4 (t, *J* = 132.2 Hz, C-1), 45.7 (t, *J* = 4.1 Hz, C-2), 49.2 (C-4), 62.5 (dd, *J* = 32.7, 6.3 Hz, C-1'); ³¹P NMR (202.46 MHz, CDCl₃) δ 22.78.

4.2.7. Tetraethyl 1-[(*n*-tetradec-1-ylamino)ethyl] 1,1-bisphosphonate (19)

Colorless oil; ¹H NMR (500.13 MHz, CDCl₃) δ 0.85 (t, *J* = 6.9 Hz, 3H, H-17), 1.22 (m, 22H, $-CH_2-$), 1.32 (t, *J* = 7.1 Hz, 12H, H-2'), 1.44 (p, *J* = 7.1 Hz, 2H, H-5), 2.55 (t, *J* = 7.2 Hz, 2H, H-4), 2.62 (tt, *J* = 23.4, 5.9 Hz, 1H, H-1), 3.10 (dt, *J* = 16.5, 5.9 Hz, 2H, H-2), 4.16 (m, 8H, H-1'); ¹³C NMR (125.77 MHz, CDCl₃) δ 14.1 (C-17), 16.3 (dd, *J* = 6.4, 2.7 Hz, C-2'), 22.6 (C-16), 26.8 (C-13), 27.3 (C-6), 29.2 (C-14), 29.5 (C-7), 29.5 (C-11), 29.6 (C-8) 29.6 (C-14) 29.9 (C-9, C-10, C-15), 31.9 (C-5), 37.4 (t, *J* = 132.6 Hz, C-1), 45.7 (t, *J* = 4.0 Hz, C-2), 49.2 (C-4), 62.5 (dd, *J* = 31.8, 6.4 Hz, C-1'); ³¹P NMR (202.46 MHz, CDCl₃) δ 22.78.

4.2.8. Tetraethyl 1-[(*n*-hexadec-1-ylamino)ethyl] 1,1-bisphosphonate (20)

Colorless oil; IR (film, cm⁻¹) 3450, 2924, 2854, 1639, 1468, 1391, 1221, 1053, 953, 797; ¹H NMR (500.13 MHz, CDCl₃) δ 0.88 (t, *J* = 7.1 Hz, 3H, H-19), 1.25 (m, 26H, -CH₂-), 1.34 (t, *J* = 7.1 Hz, 12H, H-2'), 1.46 (p, *J* = 6.8 Hz, 2H, H-5), 2.57 (t, *J* = 7.2 Hz, 2H, H-4), 2.64 (tt, *J* = 23.3, 5.9 Hz, 1H, H-1), 3.10 (td, *J* = 8.3, 6.0 Hz, 2H, H-2), 4.18 (m, 8H, H-1'); ¹³C NMR (125.77 MHz, CDCl₃) δ 14.1 (C-19), 16.4 (dd, *J* = 6.4, 2.7 Hz, C-2'), 22.7 (C-18), 26.9 (C-15), 27.3 (C-6), 29.3 (C-16), 29.5 (C-8), 29.7 (-CH₂-), 29.9 (C-17), 31.9 (C-5), 37.5 (t, *J* = 132.2 Hz, C-1), 45.8 (t, *J* = 4.1 Hz, C-2), 49.3 (C-4), 62.6 (dd, *J* = 32.2, 6.8 Hz, C-1'); ³¹P NMR (202.46 MHz, CDCl₃) δ 22.80.

4.2.9. Tetraethyl 1-[(*n*-octadec-1-ylamino)ethyl] 1,1-bisphosphonate (21)

Colorless oil; IR (film, cm⁻¹) 3435, 2920, 2853, 1639, 1468, 1391, 1221, 1053, 953, 797, 735, 557; ¹H NMR (500.13 MHz, CDCl₃) δ 0.88 (t, *J* = 7.0 Hz, 3H, H-21), 1.26 (m, 32H, -CH₂-), 1.34 (t, *J* = 7.1 Hz, 12H, H-2'), 1.47 (p, *J* = 7.0 Hz, 2H, H-5), 2.57 (t, *J* = 7.2 Hz, 2H, H-4), 2.65 (tt, *J* = 23.4, 5.9 Hz, 1H, H-1), 3.13 (dt, *J* = 16.5, 5.9 Hz, 2H, H-2), 4.18 (m, 8H, H-1'); ¹³C NMR (125.77 MHz, CDCl₃) δ 14.1 (C-21), 16.4 (dd, *J* = 5.9, 3.2 Hz, C-2'), 22.7 (C-20), 26.8 (C-17), 27.3 (C-6), 29.3 (C-18), 29.5 (C-8), 29.6 (C-7), 29.7 (-CH₂-), 29.9 (C-19), 31.9 (C-5), 37.5 (t, *J* = 132.2 Hz, C-1), 45.7 (t, *J* = 4.1 Hz, C-2), 49.2 (C-4), 62.6 (dd, *J* = 31.8, 6.3 Hz, C-1'); ³¹P NMR (202.46 MHz, CDCl₃) δ 22.79.

4.2.10. 1-[(Benzylamino)ethyl] 1,1-bisphosphonic acid (22)

White solid; mp 210–212 °C; (KBr, cm⁻¹) 3089, 2920, 2856, 2353, 2322, 1604, 1460, 1290, 1265, 1209, 1176, 1006, 956, 811, 773, 750, 711; ¹H NMR (500.13 MHz, CDCl₃) δ 2.41 (m, 1H, H-1), 3.37 (m, 2H, H2), 4.20 (s, 2H, H-4), 7.40 (m, 5H, aromatic protons); ³¹P NMR (202.46 MHz, CDCl₃) δ 15.48. HRMS (ESI) Calcd for (C₉H₁₆O₆NP₂) [M+H]⁺: 296.0453; found 296.0448. Anal. Calcd for C₉H₁₅O₆NP₂: C, 36.62; H, 5.12; N, 4.75. Found: C, 36.58; H, 5.07; N, 4.61.

4.2.11. 1-[(n-Non-1-ylamino)ethyl] 1,1-bisphosphonic acid (23)

White solid; mp 193–194 °C; IR (KBr, cm⁻¹) 3082, 2952, 2927, 2856, 1460, 1272, 1184, 999, 972, 954, 709; ¹H NMR (500.13 MHz, DMSO) δ 0.85 (t, *J* = 6.8 Hz, 3H, H-11), 1.25 (m, 12H, –CH₂–), 1.54 (m, 2H, H-5), 2.20 (dist t, *J* = 20.7 Hz, 1H, H-1), 2.91 (m, 2H, H-4), 3.20 (m, 2H, H-2); ¹³C NMR (125.77 MHz, DMSO) δ 13.9 (C-12), 22.1 (C-11), 25.7 (C-6), 25.9 (C-7), 28.5 (C-8), 28.6 (C-10), 28.8 (C-9), 31.3 (C-5), 44.5 (C-2), 46.5 (C-4); ³¹P NMR (202.46 MHz, DMSO) δ 15.28; HRMS (ESI) Calcd for (C₁₁H₂₈O₆NP₂) [M+H]⁺: 332.1392; found 332.1378. Anal. Calcd for C₁₁H₂₇O₆NP₂: C, 39.88; H, 8.21; N, 4.23. Found: C, 39.78; H, 8.30; N, 4.33.

4.2.12. 1-[(n-Dec-1-ylamino)ethyl] 1,1-bisphosphonic acid (24)

White solid; mp 127–128 °C; (KBr, cm⁻¹) 2961, 2921, 2854, 1468, 1192, 1161, 1033, 906, 811, 522; ¹H NMR (500.13 MHz, DMSO- d_6) δ 0.84 (t, J = 6.7 Hz, 3H, H-13), 1.24 (m, 16H, $-CH_2-$), 1.52 (p, J = 7.5 Hz, 2H, H-5), 2.22 (tt, J = 20.7, 7.3 Hz, 1H, H-1), 2.90 (t, J = 7.3 Hz, 2H, H-4), 3.19 (dt, J = 14.0, 7.4 Hz, 2H, H-2); ¹³C NMR (125.77 MHz, DMSO- d_6) δ 14.0 (C-13), 22.1 (C-12), 25.7 (C-6), 25.9 (C-7), 28.6 (C-8), 28.7 (C-10), 28.9 (C-9), 28.9 (C-11), 31.3 (C-5), 44.7 (C-2), 46.5 (C-4); ³¹P NMR (202.46 MHz, DMSO- d_6) δ 11.51. HRMS (ESI) Calcd for (C₁₁H₂₇O₆P₂FNa) [M+Na]⁺: 354.1211; found 354.1192.

4.2.13. 1-[(n-Undec-1-ylamino)ethyl] 1,1-bisphosphonic acid (25)

White solid; mp 170–172 °C; (KBr, cm⁻¹) 3101, 2923, 2854, 2322, 1693, 1467, 1272, 1182, 1002, 950, 705; ¹H NMR (200.13 MHz, D₂SO₄) δ 0.84 (m, 3H, H-14), 1.21 (m, 16H, -CH₂–),

1.70 (m, 2H, H-5), 3.21 (m, 2H, H-4), 3.60–3.71 (m, 3H, H-1, H-2); 13 C NMR (50.3 MHz, D₂SO₄) δ 13.9 (C-14), 22.6 (C-13), 26.0 (C-6, C-7), 29.1 (C-8, C-9, C-10, C-11), 29.3 (C-12), 31.8 (C-5), 43.2 (C-2), 51.7 (C-4); 31 P NMR (202.46 MHz, D₂O) δ 14.37. HRMS (ESI) Calcd for (C₁₃H₃₂O₆NP₂) [M+H]⁺: 360.1705; found 360.1691. Anal. Calcd for C₁₃H₃₁O₆NP₂: C, 43.45; H, 8.70; N, 3.90. Found: C, 43.69; H, 8.52; N, 4.23.

4.2.14. 1-[(*n*-Dodec-1-ylamino)ethyl] 1,1-bisphosphonic acid (26)

White solid; mp 177–178 °C; IR (KBr, cm⁻¹) 3092, 2922, 2853, 1470, 1005, 953, 706; ¹H NMR (500.13 MHz, DMSO- d_6) δ 0.84 (t, *J* = 6.8 Hz, 3H, H-15), 1.23 (m, 22H, $-CH_2-$), 1.53 (p, *J* = 6.9 Hz, 2H, H-5), 2.18 (tt, *J* = 20.3, 7.4 Hz, 1H, H-1), 2.90 (t, *J* = 7.2 Hz, 2H, H-4), 3.16 (dt, *J* = 14.0, 7.1 Hz, 2H, H-2); ¹³C NMR (50.3 MHz, DMSO- d_6) δ 14.1 (C-15), 22.1 (C-14), 25.7 (C-6), 25.9 (C-7), 28.5 (C-8), 28.7 (C-12), 28.9 (C-11), 29.0 (C-10), 29.0 (C-9), 29.1 (C-13), 31.3 (C-5), 44.4 (C-2), 46.4 (C-4); ³¹P NMR (202.46 MHz, DMSO- d_6) δ 15.28. HRMS (ESI) Calcd for (C₁₄H₃₄O₆NP₂) [M+H]⁺: 374.1861; found 374.1844. Anal. Calcd for C₁₄H₃₃O₆NP₂: C, 45.04; H, 8.91; N, 3.75. Found: C, 44.80; H, 8.82; N, 3.81.

4.2.15. 1-[(*n*-Tetradec-1-ylamino)ethyl] 1,1-bisphosphonic acid (27)

White solid; mp 171–173 °C; IR (KBr, cm⁻¹) 3082, 2920, 2852, 2318, 1469. 1272, 1186, 999, 956, 705; ¹H NMR (500.13 MHz, DMSO- d_6) δ 0.86 (t, J = 6.5 Hz, 3H, H-16), 1.25 (m, 22H, $-CH_2-$), 1.54 (p, J = 6.8 Hz, 2H, H-5), 2.17 (tt, J = 20.2, 7.1 Hz, 1H, H-1), 2.94 (t, J = 7.2 Hz, 2H, H-4), 3.20 (dt, J = 13.9, 7.1 Hz, 2H, H-2); ³¹P NMR (202.46 MHz, D₂O) δ 15.70. HRMS (ESI) Calcd for (C₁₆H₃₇O₆NP₂Na) [M+Na]⁺: 424.1994; found 424.2000. Anal. Calcd for C₁₆H₃₇O₆NP₂: C, 47.87; H, 9.29; N, 3.49. Found: C, 47.64; H, 9.34; N, 3.56.

4.2.16. 1-[(*n*-Hexadec-1-ylamino)ethyl] 1,1-bisphosphonic acid (28)

White solid; mp 172–174 °C; IR (KBr, cm⁻¹) 3083, 2956, 2918, 2852, 1693, 1469, 1272, 1182, 1002, 952, 914, 806, 705; ¹H NMR (200.13 MHz, D₂SO₄) δ 0.84 (m, 3H, H-19), 1.30 (m, 26H, –CH₂–), 1.72 (m, 2H, H-5), 3.21 (m, 2H, H-4), 3.70 (m, 3H, H-1, H-2); ¹³C NMR (50.3 MHz, D₂SO₄) δ 14.1 (C-19), 22.8 (C-18), 26.1 (C-6, C-7), 29.6 (C-8, C-9), 29.9 (–CH₂–), 32.2 (C-5), 43.4 (C-2), 51.8 (C-4). HRMS (ESI) Calcd for (C₁₈H₄₂NO₆P₂) [M+H]⁺: 430.2487; found: 430.2468. Anal. Calcd for C₁₈H₄₁O₆NP₂: C, 50.34; H, 9.62; N, 3.26. Found: C, 50.88; H, 9.54; N, 3.69.

4.2.17. 1-[(*n*-Octadec-1-ylamino)ethyl] 1,1-bisphosphonic acid (29)

Mp 121–123 °C; IR (KBr, cm⁻¹) 2920, 2850, 1598, 1469, 1272, 1182, 1006, 954, 705; ¹H NMR (200.13 MHz, D₂SO₄) δ 0.84 (m, 3H, H-21), 1.30 (m, 30H, –CH₂–), 1.70 (m, 2H, H-5), 3.20 (m, 2H, H-4), 3.70 (m, 3H, H-1, H-2). HRMS (ESI) Calcd for (C₂₀H₂₇O₆P₂Na) [M+Na]⁺: 354.1211; found 354.1192.

4.3. Drug screening

4.3.1. T. cruzi amastigotes assays

Gamma-irradiated (2000 Rads) Vero cells $(3.4 \times 10^4 \text{ cells/well})$ were seeded in 96-well plates (black, clear bottom plates from Greiner Bio-One) in 100 µL RPMI media (Sigma) with 10% FBS. Plates were incubated overnight at 35 °C and 7% CO₂. After overnight incubation, Vero cells were challenged with 3.4×10^5 trypomastigotes/well (CL strain overexpressing a tdTomato red fluorescent protein) in 50 µL volume and incubated for 5 h at 35 °C and 7% CO₂. After infection, cells were washed once with Hanks solution (150 µL/well) to eliminate any extracellular

parasites and compounds were added in serial dilutions in RPMI media in 150 μ L volumes. Each dilution was tested in quadruplicate. Each plate also contained controls with host cells and no parasites (for background check), controls with two representative drug dilutions and no parasites (for cytotoxicity assays), and controls with parasites and no drugs (positive control). For each plate, benznidazole was also used as a positive control at 3.5 and 1.5 μ M. After drug addition, plates were incubated at 35 °C and 7% CO₂. At day 3 post-infection, plates were assayed for fluorescence.⁴³ IC₅₀ values were determined by non-linear regression analysis using SigmaPlot.

4.3.2. T. gondii tachyzoites assays

Experiments on *T. gondii* tachyzoites were carried out as described previously⁴⁴ using *T. gondii* tachyzoites expressing red fluorescence protein.⁴⁵ Cells were routinely maintained in hTerT cells grown in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum, 2 mM glutamine, 1 mM pyruvate, at 37 °C in a humid 5% CO₂ atmosphere. Confluent monolayers grown in 96-well black plates with optical bottoms (Falcon/Becton-Dickinson, Franklin Lakes, NJ) were used and drugs dissolved in the same medium and serially diluted in the plates. Freshly isolated tachyzoites were filtered through a 3 µm filter and passed through a 22 gauge needle, before use. The cultures were inoculated with 10⁴ tachyzoites/well in the same media. The plates were incubated at 37 °C and read daily in a Molecular Devices fluorescence plate reader. To preserve sterility the plates were read with covered lids, and both excitation (510 nm) and emission (540 nm) were read from the bottom.⁴⁶ For the calculation of the IC₅₀, the percent of growth inhibition was plotted as a function of drug concentration by fitting the values to the function: $I = I_{\text{max}} C/(IC_{50} + C)$, where I is the percent inhibition, $I_{\text{max}} = 100\%$ inhibition, C is the concentration of the inhibitor, and IC₅₀ is the concentration for 50% growth inhibition.

4.3.3. TcFPPS and TgFPPS assays and product analysis

For *Tc*FPPS^{14,15,47} 100 µL of assay buffer (10 mM Hepes, pH 7.4, 5 mM MgCl₂, 2 mM dithiothreitol, 100 µM [4-¹⁴C]IPP (10 µCi/µmol)), and 100 µM DMAPP were prewarmed to 37 °C. The assay was initiated by the addition of recombinant protein (10–20 ng). The assay was allowed to proceed for 30 min at 37 °C and was quenched by the addition of 6 M HCl (10 µL). The reactions were made alkaline with 6.0 M NaOH (15 µL), diluted in water (0.7 mL), and extracted with hexane (1 mL). The hexane solution was washed with water and transferred to a scintillation vial for counting. One unit of enzyme activity was defined as the activity required to incorporate 1 nmol of [4-¹⁴C]IPP into [14-¹⁴C]FPP in 1 min. For TgFPPS the assay conditions were as described above except that the buffer contained 1 mM MgCl₂.

4.3.4. TcSPPS assay

The activity of the enzyme was determined by a radiometric assay based on that described before.⁴⁸ Briefly, 100 μ L of assay buffer (100 mM Tris–HCl buffer, pH 7.4, 1 mM MgCl₂, 1% (v/v) Triton X-100, 100 μ M [4-¹⁴C]IPP (10 μ Ci/ μ mol)), and 50 μ M GGPP was prewarmed to 37 °C. The assay was initiated by the addition of 10–20 ng of recombinant protein. The assay was allowed to proceed for 30 min at 37 °C and was quenched by chilling quickly in an ice bath. The reaction products were extracted with 1 mL of 1-butanol saturated with water. The organic layer was washed with water saturated with NaCl, and transferred to a scintillation vial with 4 mL of scintillation solution Ecolume for counting. One unit of enzyme activity was defined as the activity required to incorporate 1 nmol of [4-¹⁴C]IPP into [4-¹⁴C]IPP in 1 min.

Acknowledgments

We thank Allysa Smith for help with *T. gondii* cultures. This work was supported by Grants from the National Research Council of Argentina (PIP 1888), ANPCyT (PICT 2008 #1690), and the Universidad de Buenos Aires (X-191) to J.B.R., and the U.S. National Institutes of Health to R.D. (AI-082542) and S.N.J.M. (AI-068467). V.S.R. was supported in part by a training grant of the Ellison Medical Foundation to the Center for Tropical and Emerging Global Diseases.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmc.2011.02.037.

References and notes

- 1. Urbina, J. A.; Docampo, R. Trends Parasitol. 2003, 19, 495.
- 2. Urbina, J. A. Acta Trop. 2010, 115, 55.
- 3. Urbina, J. A. Drugs Future 2010, 35, 409.
- 4. García Liñares, G.; Ravaschino, E. L.; Rodriguez, J. B. Curr. Med. Chem. 2006, 13, 335.
- 5. Brener, Z. Annu. Rev. Microbiol. 1973, 27, 347.
- 6. Kirchhoff, L. V. N. Eng. J. Med. 1993, 329, 639.
- 7. Galel, S. A.: Kirchhoff, L. V. Transfusion **1996**. 36, 227.
- Nussenzweig, V.; Sonntag, R.; Biancalana, A.; Pedreira de Fleitas, J. L.; Amato Neto, V.; Kloetzel, J. Hospital (Rio de Janeiro) 1953, 44, 731.
- 9. Docampo, R.; Moreno, S. N. J. Rev. Biochem. Toxicol. 1985, 7, 159.
- 10. Urbina, J. A. Mem. Inst. Oswaldo Cruz 1999, 94, 349.
- 11. Docampo, R.; Moreno, S. N. Curr. Drug Targets: Infect. Disord. 2001, 1, 51.
- 12. Docampo, R.; Moreno, S. N. J. Curr. Pharm. Des. 2008, 14, 882.
- Gelb, M. H.; Van Voorhis, W. C.; Buckner, F. S.; Yokoyama, K.; Eastman, R.; Carpenter, E. P.; Panethymitaki, C.; Brown, K. A.; Smith, D. F. Mol. Biochem. Parasitol. 2003, 726, 155.
- Montalvetti, A.; Bailey, B. N.; Martin, M. B.; Severin, G. W.; Oldfield, E.; Docampo, R. J. Biol. Chem. 2001, 276, 33930.
- Montalvetti, A.; Fernandez, A.; Sanders, J. M.; Ghosh, S.; Van Brussel, E.; Oldfield, E.; Docampo, R. J. Biol. Chem. 2003, 278, 17075.
- Gabelli, S. B.; McLellan, J. S.; Montalvetti, A.; Oldfield, E.; Docampo, R.; Amzel, L. M. Proteins 2006, 62, 80.
- Ferella, M.; Montalvetti, A.; Rohloff, P.; Miranda, K.; Fang, J.; Reina, S.; Kawamukai, M.; Búa, J.; Nilsson, D.; Pravia, C.; Katzin, A.; Cassera, M. B.; Aslund, L.; Andersson, B.; Docampo, R.; Bontempi, E. J. J. Biol. Chem. 2006, 281, 39339.
- 18. Reszka, A. A.; Rodan, G. A. Mini-Rev. Med. Chem. 2004, 4, 711.
- 19. Reszka, A. A.; Rodan, G. A. *Curr. Osteoporos. Rep.* **2003**, 1, 45.
- Martin, M. B.; Grimley, J. S.; Lewis, J. C.; Heath, H. T., III; Bailey, B. N.; Kendrick, H.; Yardley, V.; Caldera, A.; Lira, R.; Urbina, J. A.; Moreno, S. N. J.; Docampo, R.; Croft, S. L.; Oldfield, E. *J. Med. Chem.* **2001**, *44*, 909.
- Hughes, D. E.; Wright, K. R.; Uy, H. L.; Sasaki, A.; Yoneda, T.; Roodman, G. D.; Mundy, G. R.; Boyce, B. F. J. Bone Miner. Res. 1995, 10, 1478.
- Rogers, M. J.; Frith, J. C.; Luckman, S. P.; Coxon, F. P.; Benford, H. L.; Monkkonen, J.; Auriola, S.; Chilton, K. M.; Russell, R. G. *Bone* **1999**, *24*, 73S.
- Urbina, J. A.; Moreno, B.; Vierkotter, S.; Oldfield, E.; Payares, G.; Sanoja, C.; Bailey, B. N.; Yan, W.; Scott, D. A.; Moreno, S. N. J.; Docampo, R. J. Biol. Chem. 1999, 274, 33609.
- Martin, M. B.; Sanders, J. M.; Kendrick, H.; De Luca-Fradley, K.; Lewis, J. C.; Grimley, J. S.; Van Brussel, E. M.; Olsen, J. R.; Meints, G. A.; Burzynska, A.; Kafarski, P.; Croft, S. L.; Oldfield, E. J. Med. Chem. 2002, 45, 2904.
- Ghosh, S.; Chan, J. M.; Lea, C. R.; Meints, G. A.; Lewis, J. C.; Tovian, Z. S.; Flessner, R. M.; Loftus, T. C.; Bruchhaus, I.; Kendrick, H.; Croft, S. L.; Kemp, R. G.; Kobayashi, S.; Nozaki, T.; Oldfield, E. J. Med. Chem. 2004, 47, 175.
- Szajnman, S. H.; García Liñares, G. E.; Li, Z.-H.; Galizzi, M.; Jiang, C.; Bontempi, E.; Ferella, M.; Moreno, S. N. J.; Docampo, R.; Rodriguez, J. B. *Bioorg. Med. Chem.* 2008, 16, 3283.
- Szajnman, S. H.; Bailey, B. N.; Docampo, R.; Rodriguez, J. B. Bioorg. Med. Chem. Lett. 2001, 11, 789.
- Szajnman, S. H.; Montalvetti, A.; Wang, Y.; Docampo, R.; Rodriguez, J. B. Bioorg. Med. Chem. Lett. 2003, 13, 3231.
- Szajnman, S. H.; Ravaschino, E. L.; Docampo, R.; Rodriguez, J. B. Bioorg. Med. Chem. Lett. 2005, 15, 4685.
- Ling, Y.; Sahota, G.; Odeh, S.; Chan, J. M. W.; Araujo, F. G.; Moreno, S. N. J.; Oldfield, E. J. Med. Chem. 2005, 48, 3130.
- Bouzahzah, B.; Jelicks, L. A.; Morris, S. A.; Weiss, L. M.; Tanowitz, H. B. Parasitol. Res. 2005, 96, 184.
- 32. Amzel, L. M. Personal communication.
- Hosfield, D. J.; Zhang, Y.; Dougan, D. R.; Broun, A.; Tari, L. W.; Swanson, R. V.; Finn, J. J. Biol. Chem. 2003, 278, 18401.
- Tarshis, L. C.; Proteau, P. J.; Kellogg, B. A.; Sacchettini, J. C.; Poulter, C. D. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 15018.

- 35. Huang, C.-H.; Gabelli, S. B.; Oldfield, E.; Amzel, L. M. Proteins 2010, 78, 888.
- 36. Cao, R.; Chen, C. K.-M.; Guo, R.-T.; Wang, A. H.-J.; Oldfield, E. Proteins 2008, 73,
- 431. 37. Szajnman, S. H.; García Liñares, G. E.; Moro, P.; Rodríguez, J. B. *Eur. J. Org. Chem.*
- **2005**, 3687. 38. Degenhardt, C. R.; Burdsall, D. C. J. Org. Chem. **1986**, 51, 3488.
- Bulman Page, P. C.; Jonathan, P. G.; Moore, J. P. G.; Mansfield, I.; McKenzie, M. J.; Bowler, W. B.; Gallagher, J. A. *Tetrahedron* 2001, *57*, 1837.
- Lazzarato, L.; Rolando, B.; Lolli, M. L.; Tron, G. C.; Fruttero, R.; Gasco, A.; Deleide, G.; Guenther, H. L. J. Med. Chem. 2005, 48, 1322.
- Urbina, J. A.; Concepcion, J. L.; Montalvetti, A.; Rodriguez, J. B.; Docampo, R. Antimicrob. Agents Chemother. 2003, 47, 2047.
- Rodrigues, C. O.; Scott, D. A.; Bailey, B.; de Souza, W.; Benchimol, M.; Moreno, B.; Urbina, J. A.; Oldfield, E.; Moreno, S. N. J. *Biochem. J.* 2000, 349, 737.
- Canavaci, A. M.; Bustamante, J. M.; Padilla, A. M.; Pereza Brandan, C. M.; Simpson, L. J.; Xu, D.; Boehlke, C. L.; Tarleton, R. L. PLOS Negl. Trop. Dis. 2010, 4, e740.
- Gubbels, M. J.; Li, C.; Striepen, B. Antimicrob. Agents Chemother. 2003, 43, 309.
 Agrawal, S.; van Dooren, G. G.; Beatty, W. L.; Striepen, B. J. Biol. Chem. 2009, 284, 33683.
- 46. Ravaschino, E. L.; Docampo, R.; Rodriguez, J. B. J. Med. Chem. 2006, 49, 426.
- 47. Ogura, K.; Nishino, T.; Shinka, T.; Seto, S. Methods Enzymol. **1985**, *110*, 167.
- 48. Rilling, H. C. Methods Enzymol. 1985, 110, 145.